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ABSTRACT

Top-down attention plays an important role in guidance of

human attention in real-world scenarios, but less efforts in

computational modeing of visual attention has been put on it.

Inspired by the mechanisms of top-down attention in human

visual perception, we propose a multi-layer linear model of

top-down attention to modulate bottom-up saliency maps ac-

tively. The first layer is a linear regression model which com-

bines the bottom-up saliency maps on various visual features

and objects. A contextual dependent upper layer is introduced

to tune the parameters of the lower layer model adaptively.

Finally, a mask of selection history is applied to the fused at-

tention map to bias the attention selection towards the task

related regions. Efficient learning algorithm with single-pass

polynomial complexity is derived. We evaluate our model on

a set of natural egocentric videos captured from a wearable

glass in real-world environments. Our model outperforms the

baseline and state-of-the-art bottom-up saliency models.

Index Terms— ego-centric, visual attention, real-world

1. INTRODUCTION

Attention selection is a remarkable capability of human vision

system. It plays a crucial role in achieving highly efficient

human visual perception dealing with huge amounts of natu-

ral visual information in complex real-world environments.

Computational modeling of human visual attention has al-

ways attracted much interest in physiology, neuroscience and

computer vision. On one side, it could facilitate better under-

standing of human vision system [1]. On the other hand, it

can be used to develop efficient vision systems for numerous

applications such as robotics [2].

Many models of visual attention have been proposed in

computer vision [2]. The research efforts have mostly focused

on modeling bottom-up saliency. Computing saliency maps

on various low-level image features and high-level semantic

objects have been investigated, including intensity, color, and
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orientation [3], histogram on DoG [4], motion [5], text [6],

face [7], hand [8], etc. The recent advances in deep learn-

ing has spurred a wealth of deep neural networks for bottom-

up saliency detection. For example, Huang et al. who had

greatly improved saliency prediction on images by leverag-

ing on rich pools of semantic features from deep convolution

neural network (2D-CNN) [9]. Models of bottom-up saliency

have been very successful in predicting fixations in still im-

ages on screen in free-viewing tasks, however, they perform

poorly in everyday tasks [10, 11, 8, 12].

Physiological studies have revealed that, in real-world

scenarios, top-down attention plays an important role in

guiding visual attention towards task-related objects in the

view [13, 14]. However, modeling top-down attention is

a hard task due to the limited understanding of the related

mechanisms in human vision system [15, 10, 7]. A few mod-

els have been proposed. Most investigated model is linear

regression [16, 17], where a linear mapping from low-level

image features (e.g. gist) or bottom-up saliency maps to

the fixation location is learned directly on training images.

This model can be considered as single layer linear model

which has limited capability to adapt to variations of tasks,

scenes and viewpoints. In [15], Borji et al have investigated

a few top-down models, including linear regression, kNN,

and SVM. It was observed that kNN approach performs best.

Borji et al have further proposed a DBN (Dynamic Bayesian

Network) model to predict the fixation on the next image

based on previous image sequence [10].

Inspired by the progresses in understanding of the top-

down attention mechanisms [18, 13, 14], we proposed an effi-

cient multi-layer linear model to modulate various bottom-up

saliency maps adaptively for current task and scene. The

lower layer is a linear regression model. It integrates bottom-

up saliency maps on low-level saliency, ego-motion, exo-

motion, ground, text, hand, and face. An upper layer of linear

model is introduced, which is trained to learn the top-down

rules to tune the weights of the lower layer according to cur-

rent task. Finally, a filter of selection history for the related

task is applied to the fused attention map to bias the atten-

tion selection towards task-related regions in the scene. We
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train and evaluate our model on natural egocentric videos

capturing first-person-views of the world from a wearable

glass when performing different tasks in indoor and outdoor

environments, which is much more realistic to study human

attention in real-world tasks [11, 12]. Our model outperforms

the baseline and state-of-the-art bottom-up models by a clear

margin on the publicly available egocentric video dataset with

fixation records [19].

2. OUR ATTENTION MODEL

To imitate human vision system, a computational model of

visual attention should integrate the bottom-up saliency and

top-down attentional guidance. A full model of visual atten-

tion is implemented as the intergrative framework inspired

by the Attentional Engagement Theory [18], An Integrative

Framework [20], and mechanisms of human visual atten-

tion [1, 13]. In Attentional Engagement Theory, it is assumed

that human visual attention deployment is a two-phase pro-

cedure. In the first phase, the physical saliences are encoded

and bound together without focal attention; and in the second

phase, attention is modulated by top-down factors, e.g. the

goal of current task, to pay attention to the most behaviorally

relevant locations and objects. In addition, selection history

is considered as a strong influencing top-down cue [20, 2].

Hence, we establish a full model of visual attention as a

three-phase sequential system, as shown in Figure 1. In the

first phase, namely Pre-attentive Parallel Phase, the physical

saliences, or the bottom-up saliency maps on various low-

level image features and semantic objects are computed in

parallel. In the second phase, namely Selective Attention

Phase, the top-down modulation is performed to fuse the

bottom-up saliency maps adaptively according to current task

and low-bandwidth signals from the physical saliences. Fi-

nally, in the third phase, namely Gaze Deployment Phase,

a filter of selection history is applied to bias the attention

deployment towards the task-related regions. The multi-layer

linear model for top-down modulation in phase-2 is the core

novel part of this model.

2.1. Pre-attentive Parallel Phase

In the Pre-attentive Parallel phase, various bottom-up phys-

ical saliences are computed in parallel. Exploiting recent

progresses in computer vision, both feature-level and object-

level saliences are employed in our model. They are described

briefly in the following.

Low-level saliency: Graph Based Visual Saliency (GBVS)

[21] is employed for low-level saliency. It is a graph-based

implementation of the Itti and Koch model [3] that uses a

dissimilarity metric. It is selected due to its superior perfor-

mence among the models on low-level saliences [15].

Ego-motion: An algorithm similar to method [5] is imple-

mented. To minimize the effect of local scene motion on the

Fig. 1. The full model of visual attention inspired by hu-

man vision system. In Pre-attentive Parallel phase, the phys-

ical saliences are computed in parallel. In Selective Atten-

tion phase, top-down attention modulation is performed by a

multi-layer linear model from Uk to {wi} for current task k.

The saliences from the first phase are linearly combined with

their respectively learnt weights, wi, Finally, in Gaze Deploy-

ment phase, a filter of selection history for current task is ap-

plied to the fused attention map A(x) to deploy the gaze.

estimation of ego-motion, an average global motion vector

is computed along the boundaries of the Large Displacement

Optical Flow (LDOF) flow field [22]. This motion vector is

used to build an ego-motion saliency map [23]. This proba-

bility map provides a head-movement saliency.

Exo-motion: First, LDOF is applied to compute the flow

field of two consecutive frames. Then, by subtracting global

motion vector from the flow field, the absolute values of

the remaining components are normalized as the exo-motion

saliency map [23]. It provides a probability map of saliency

based on scene motion.

Text Detection: The method of “Class-Specific Extremal Re-

gions for Scene Text Detection” proposed by Luks Neumann

and Jiri Matas [6] is used. The implementation in OpenCV

3.0 is employed. It is trained on English alphabets only.

Face Detection: The OpenCV implementation of Haar

feature-based cascade classifiers proposed by Viola and

Jones [24] is employed. Faces are attracted attention dur-

ing social interactions.

Hand Detection: During object manipulation, fixations are

often correlated with hands. We use the hand detection algo-

rithm for ego-centric videos [5] to generate a saliency map on

hands in the view.

Ground Plane: When moving around, human pays atten-

tions to the ground plane frequently. The Geometric Context

algorithm developed by Hoiem et al. [25] is used to detect the

ground plane and generate a saliency map.

The existing open-source implementations are used. Un-

less otherwise stated, the default parameters and trained mod-

els are used. The output saliency maps are normalized be-
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tween 0 and 1 at each pixel, where the high value indicates the

higher saliency. It is worthy involving CNN-based saliency

map in future study.

2.2. Selective Attention Phase

In this phase, top-down modulation of attention is computed.

A multi-layer linear model is proposed for this purpose. In the

lower-layer, a linear regression model is used to integrate the

bottom-up saliency maps. Instead of fixed weights used in ex-

isting models [17], an upper-layer linear model is introduced,

which combines low-bandwidth signals of coarse bottom-up

features and guidance of current task to tune the weights of

the lower-layer online. The model and learning algorithm are

described in this subsection.

For an input image I(x) under a task Ck, Let {Ai(x)}Li=1

be the bottom-up saliency maps and L is the number of

salience maps, i.e. 7., as described earlier, then let A(x) be

the fused attention map. Here and below we omit index k for

task for conciseness. The fused attention map can be obtained

as a weighted sum of the bottom-up saliency maps:

A(x) =
∑L

i=1
wiAi(x) (1)

However, human attends to a point according to the goal of

current task and physical saliency features. That means, the

weight wi is adaptive to different scene under different task

according to the mechanism of top-down attention [13]. To

build a computational model of top-down modulation of at-

tention, we propose a linear model over (1) to compute the

adaptive weights. It is expressed as

wi =
∑L

j=1
ui
jpj + ui

0 = uT
i p, (2)

where ui = [ui
0, u

i
1, · · · , ui

L]
T represents the parameters

of the upper-layer model, and p = [1, p1, · · · , pL]T repre-

sents the low-bandwidth signals of bottom-up saliences. The

low-bandwidth signal provides a coarse representation of the

physical saliency [13]. We use the standard deviation of a

saliency map as the low-bandwidth signal, which represents

how strong a visual cue against its surroundings. It is denoted

as pj = Dev (Aj(x)).
Let w = [w1, · · · , wL]

T be the weight vector of the

lower-layer model. Eq. (2) can be expressed as

w =

⎡

⎢⎣
uT
1
...

uT
L

⎤

⎥⎦p =

⎡

⎢⎣
u1
0 u1

1 · · · u1
L

...
...

. . .
...

uL
0 uL

1 · · · uL
L

⎤

⎥⎦p = Up. (3)

The matrix U denotes the upper-layer model, representing

cognitive knowledge of top-down attention modulation [13].

It can be learned from recordings of human fixations by eye-

tracking in different scenarios under the corresponding task.

For a task Ck, we select N training images. The train-

ing set is represented as T = {In(x), An(x)}Nn=1, where

In(x) is an input image and An(x) is the ground truth atten-

tion map generated according to the recorded human fixation.

Under the corresponding task Ck, for the n-th training image

In(x), we can obtain the set of bottom-up saliency maps, i.e.,

{Ani(x)}Li=1. According to (1), we have

An(x) =
∑L

i=1
wiAni(x). (4)

Suppose the image has M pixels, we can express yn =
[An(x1), · · · , An(xM )]

T
as the 1-dimension vector of the

ground truth map, and

Xn =

⎡

⎢⎣
An1(x1) · · · AnL(x1)

...
. . .

...

An1(xM ) · · · AnL(xM )

⎤

⎥⎦ , (5)

as the data matrix of the bottom-up saliency maps. Then,

Eq. (4) can be expressed as

yn = Xnwn. (6)

Using Least Square Regression, we can obtain the weight vec-

tor as

wn = (XT
n Xn + αI)−1XT

n yn, (7)

where I is the identity matrix and α is the parameter for regu-

lation. We further extend to upper-level to learn the cognitive

knowledge for top-down attention modulation. According to

(3), on the n-th training sample, we have wn = Upn, where

pn are obtained from {Ani(x)}Li=1. From all the N training

samples in the training set, we can obtain

[w1, · · · ,wN ] = U [p1, · · · ,pN ], or W = UP. (8)

The Least Square solution of U on (8) turns out to be

U = WPT (PPT + αI). (9)

In the application, for an input image I(x) under task

Ck, the bottom-up saliency maps are computed first. Then,

through standard derivation p to extract low-bandwidth sig-

nals of the bottom-up saliency maps, the adaptive weights w
for fusion are derived by matrix U . Finally, the fused map of

predicted attention is obtained by weighted sum of bottom-up

saliency maps.

2.3. Gaze Deployment Phase

In this phase, the top-down influence of reward or selection

history [13, 20] is applied. It is implemented by applying a

mask of selection history for current task to the fused atten-

tion map. Let Mk represent the selection history for task k. It

is a map of prior fixation distribution generated from the train-

ing data of ground-truth fixations by convolving an isotropic

Gaussian of size 4o and σ = 1o [26]. The filtered attention

map is the result of pixel-level product between mask Mk and
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Method BMS GBVS ITTI SALICON NS NM REG kNN CB Ours

AAE 17.8 15.6 16.9 15.6 16.2 28.7 16.3 16.7 12.8 12.3
AUC 0.620 0.642 0.626 0.653 0.593 0.577 0.593 0.512 0.509 0.677

Table 1. Experimental Results: The average AAE and AUC scores for the different methods.

fused attention map. The image location with the maximum

value of the filtered map is assigned as the deployed gaze:

xgaze = max
x

(A(x)Mk(x)). (10)

The constraint of selection history reduces the effects of out-

liers generated by the top-down linear model.

3. EXPERIMENTAL RESULTS

The bottom-up models of visual attention have achieved

a great success in most of existing benchmarking datasets

of free-viewing tasks on images displayed on a computer

screen [7, 10]. However, they perform poorly in scenarios of

everday tasks. In this study, we performed a formal evalua-

tion of our model on a recently available dataset of natural

egocentric videos [19], which capture first-person-views of

the world from a wearable glass when performing daily life

tasks in indoor and outdoor environments. It is much more

realistic to study human attention in real-world tasks [11, 12]

compared with existing datasets of viewing images on screens

for free-viewing or game tasks [7].

3.1. Dataset

To our knowledge, the recent dataset of attentions in natural

egocentric videos [19] contains much more daily life activi-

ties in indoor and outdoor environments compared with pre-

vious ones consisting of one or two activities (e.g. cooking)

in a fixed place in a room [8]. The videos and eye-tracking

data were recorded while six participants were engaged in

daily activities, such as social interactions, object manipula-

tions, walking in the offices, homes and public places. The

14 videos were also manually annotated with the activities

(tasks) in the video segments. In our experiments, the activ-

ities are grouped into 8 tasks, of which the 7 tasks are the

combinations of 3 simple tasks of Social, Walk and Object,
and another one is of Others.

3.2. Metrics and Protocols

Two standard and complementary metrics are used: Area Un-

der ROC Curve (AUC) and Average Angular Error (AAE) [2].

For AUC, the saliency map is treated as a binary classifier to

separate positive from negative pixels at various thresholds

compared with the ground truth. It is a standard metric in the

saliency prediction literature. AAE measures the angular dis-

tance between the predicted gaze point and the ground-truth.

It is widely used in the gaze tracking literature [8]. The widely

accepted protocol of leave-one-out cross-validation was used.

The metrics for the 14 videos are then averaged and presented.

3.3. Results

We compare the results against the state-of-the-art bottom-up

saliency models, i.e., BMS [27], GBVS [21], Itti/Koch’s [3],

and a recent deep learning model SALICON [9], using the au-

thors’ own implementations. The motion cues in [21, 3] are

enabled for fair comparison. In addition, we also compared

our method against other well-known models, such as Nor-

malized and Sum (NS) and Normalized and Max (NM) fusion

methods described by Chevet and Meur [28]. As baseline of

top-down models [15], kNN on GIST feature and linear re-

gression (REG) model are also implemented. As suggested

in their work, each top-down task (e.g. Social) was trained

separately. We show the best results of kNN where k=1. The

center bias is used as an reference [8].

The results are presented in Table 1. It is observed that

the compared methods may achieve competitive performance

on one metric but poor performance on the other metric. Our

model with top-down modulation ranks best for both metrics.

Compared to second best computational model, GBVS, it im-

proves 3.3◦ and 5.45% for AAE and AUC respectively. For

center bias baseline, it improves by 0.5◦, and 33.0% for AAE

and AUC respectively.

4. CONCLUSIONS

Inspired by the mechanisms of top-down attention in human

visual perception, we propose a multi-layer linear model

for top-down attention modulation, where the lower-layer

of linear regression integrates various bottom-up saliency

maps, and the upper-layer linear model tunes the lower-

layer model online according to the goal of current task and

the low-bandwidth signals of bottom-up saliences. An ef-

ficient learning algorithm is derived to learn the cognitive

knowledge of top-down attention modulation. The formal

evaluation on a recent dataset of natural egocentric videos has

shown improvements over state-of-the-art bottom-up models

and baseline top-down models on FPV videos in daily life.

This work was supported by the Reverse Engineering Vi-

sual Intelligence for cognitive Enhancement (REVIVE) pro-

gramme funded by the Joint Council Office of A*STAR, Sin-

gapore.
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Torralba, “Learning to predict where humans look,” in

CVPR. IEEE, 2009.

[8] Yin Li, Alireza Fathi, and James M Rehg, “Learning to

predict gaze in egocentric video,” in ICCV. IEEE, 2013.

[9] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao,

“Salicon: Reducing the semantic gap in saliency predic-

tion by adapting deep neural networks,” in ICCV, 2015.

[10] Ali Borji, Dicky N Sihite, and Laurent Itti, “What/where

to look next? modeling top-down visual attention in

complex interactive environments,” Transactions on
Systems, Man, and Cybernetics: Systems, 2014.

[11] Michael F Land, “Eye movements and the control of

actions in everyday life,” Progress in retinal and eye
research, vol. 25, no. 3, pp. 296–324, 2006.

[12] Benjamin W Tatler, Mary M Hayhoe, Michael F Land,

and Dana H Ballard, “Eye guidance in natural vision:

Reinterpreting salience,” Journal of vision, vol. 11, no.

5, pp. 5, 2011.

[13] Farhan Baluch and Laurent Itti, “Mechanisms of top-

down attention,” Trends in neurosciences, 2011.

[14] Adam Gazzaley and Anna C Nobre, “Top-down mod-

ulation: bridging selective attention and working mem-

ory,” Trends in cognitive sciences, vol. 16, no. 2, pp.

129–135, 2012.

[15] Ali Borji, Dicky N Sihite, and Laurent Itti, “Computa-

tional modeling of top-down visual attention in interac-

tive environments.,” in BMVC, 2011, vol. 85, pp. 1–12.

[16] Robert J Peters and Laurent Itti, “Beyond bottom-up:

Incorporating task-dependent influences into a compu-

tational model of spatial attention,” in CVPR. IEEE,

2007.

[17] Qi Zhao and Christof Koch, “Learning a saliency map

using fixated locations in natural scenes,” Journal of
vision, vol. 11, no. 3, pp. 9–9, 2011.

[18] John Duncan and Glyn Humphreys, “Beyond the search

surface: Visual search and attentional engagement.,”

1992.

[19] Keng-Teck Ma, Rosary Lim, Peilun Dai, Liyuan Li, and

Joo-Hwee Lim, “Unconstrained ego-centric videos with

eye-tracking data,” in CVPR Workshop on Scene Under-
standing (SUNw). IEEE, 2012.

[20] Edward Awh, Artem V Belopolsky, and Jan Theeuwes,

“Top-down versus bottom-up attentional control: A

failed theoretical dichotomy,” Trends in cognitive sci-
ences, vol. 16, no. 8, pp. 437–443, 2012.

[21] Jonathan Harel, Christof Koch, and Pietro Perona,

“Graph-based visual saliency,” in Advances in neural
information processing systems, 2006, pp. 545–552.

[22] Thomas Brox, Christoph Bregler, and Jitendra Malik,

“Large displacement optical flow,” CVPR, 2009.

[23] Kentaro Y, Yusuke S, Takahiro O, Yoichi S, Akihiro S,

and Kazuo H, “Attention prediction in egocentric video

using motion and visual saliency,” in Advances in Image
and Video Technology, pp. 277–288. Springer, 2012.

[24] Paul Viola and Michael Jones, “Rapid object detection

using a boosted cascade of simple features,” in CVPR.

IEEE, 2001, vol. 1.

[25] Derek Hoiem, Alexei A Efros, and Martial Hebert, “Re-

covering surface layout from an image,” IJCV, vol. 75,

no. 1, pp. 151–172, 2007.

[26] Ali Borji, Dicky N Sihite, and Laurent Itti, “Objects

do not predict fixations better than early saliency: A re-
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