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Abstract. Deep neural networks trained with back-propagation have
been the driving force for the progress in fields such as computer vision,
natural language processing. However, back-propagation has often been
criticized for its biological implausibility. More biologically plausible
alternatives to backpropagation such as target propagation and feedback
alignment have been proposed. But most of these learning algorithms are
originally designed and tested for feedforward networks, and their ability
for training recurrent networks and arbitrary computation graphs is not
fully studied nor understood. In this paper, we propose a learning pro-
cedure based on target propagation for training multi-output recurrent
networks. It opens doors to extending such biologically plausible models
as general learning algorithms for arbitrary graphs.
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1 Introduction

Our brain has the amazing ability to use past information to set up our expecta-
tions for the future and use the actual perceived information to update synaptic
weights to build a better model of the world around us. This type of sequential
modelling also has been an important tasks for artificial neural networks. An
important sequence model is the Simple Recurrent Model (SRN) proposed by
[6,9] which has been the basis for many of today’s successful sequence models.
Usually recurrent neural network (RNN) models are trained by backpropaga-
tion through time (BPTT) [15,17]. However, there are two major challenges for
training recurrent networks with BPTT: First, there is the well known vanish-
ing/exploding gradient problem that the error signal received by earlier steps are
either too small or to large due to the long paths of applying chain rules under
certain conditions [14]. Second, it is usually considered biologically implausi-
ble [5] because it requires symmetric weights for the forward and backward
passes, which has not been observed biologically. Other more biologically learn-
ing algorithms have been proposed, such as target propagation that utilizes auto-
encoders for credit assignment [2,10].
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Target propagation was originally proposed for feedforward neural networks,
and there has been work to extend it to training RNNs. In [12], a step-wise
inverse function is used to propagate the target activations backward in time,
which is termed Target Propagation Through Time (TPTT). The authors have
shown that target propagation is able to back propagate targets instead of error
derivatives over longer ranges than backpropagation can, partially addressing
the exploding/vanishing gradient problem. However, It is not straightforward to
extend TPTT to RNNs with multiple outputs. For models with multiple loss
terms, each loss term would have its own credit assignment path. The error back
propagation in backpropagation algorithm is a linear operation, thus, we can
add the error derivatives from multiple credit assignment paths and propagate
the resulting accumulated derivatives only. However, due to the non-linearity in
target propagation’s backward pass, we cannot add up the targets from different
paths directly. In this paper, we propose a method that could merge the targets
from multiple loss terms, and as a result, only the merged targets need to be
further propagated. This method is able to generalize target propagation to
training RNNs with multiple outputs and potentially to arbitrary computation
graphs with multiple credit assignment paths.

In the following section, we will give a brief introduction to backpropagation
and target propagation.

2 Background

2.1 Backpropagation Through Time (BPTT)

With the help of backpropagation, recurrent neural network (RNN) models have
been widely applied to solve many sequence modeling tasks in domains such as
audio signal processing, natural language processing and more. The simplest
recurrent network model is the Simple Recurrent Network (SRN) [6], and it is
considered a precursor to many of today’s state-of-the-art RNN models such as
Long Short-Term Memory (LSTM) [8] and Gated Recurrent Unit (GRU) [4].

A single layer of the simple recurrent network is defined by three sets of
weights {Wxh}, {Wh,bh} and {Why,bhy} and an activation function for the
hidden layer, such as ReLU(·) and tanh(·). Depending on the tasks, an RNN
may need to produce an output at each step (many-to-many) for tasks such as
language modeling and part-of-speech (POS) tagging, or may only produce one
output at the last step (many-to-one) for tasks such as customer review sentiment
classification. For a typical many-to-many task, the inference step is defined by
a forward pass in time through the following equations for t = 1, 2, . . . , T ,

ht = σh(Whht−1 + Wxhxt + bt) (1)
yt = σy(Whyht + bhy) (2)

where σh(·) is the hidden activation function and σy is the output activation
function, such as softmax(·) for outputting a categorical distribution for multi-
class classification tasks.
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When such a model is trained by backpropagation (more accurately, gradient
descent, but hereafter, we will refer to the training process simply as backpropa-
gation), it needs to be “unrolled” in time with shared weights across time steps,
and then normal backpropagation can be applied to obtain the gradients of the
loss with respect to all trainable weights. This way of back-propagating errors
back in time is usually called backpropagation through time (BPTT).

BPTT works well for modeling short sequences. However, when it is applied
directly to long sequences, due to the long range dependencies between inputs
and outputs, it usually fails to propagate gradients across long distances due to
the so-called exploding/vanishing gradient problem [1,14].

In order to solve this problem, more complex model architectures, such as
LSTM [8] and GRU [4], and variants of BPTT, such as Truncated BPTT, gradi-
ent clipping and regularization [14] have been proposed. All these methods still
use backpropagation at its core, but utilize different ad hoc tricks to make the
long range credit assignment work.

Another problem with BPTT is its biological-implausibility. There is lit-
tle evidence from brain research that supports backpropagation as the learning
algorithm for biological learning. The main incompatibilities between backprop-
agation and our current understanding of biological learning include:

• Backpropagation requires precise knowledge of the non-linearity in the cor-
responding forward pass. But in biological learning, the feedback paths (if
exist) usually consist of a different population of neurons, which makes it
hard to match the feedforward counterpart.

• In the backward pass, backpropagation uses the exact symmetric weights of
the forward pass (the weight transport problem [11]).

• Current mainstream neural network models use real-valued activations to
convey information while most biological neurons use spikes to communicate.

• Backpropagation requires alternating between forward and backward passes.

Other more biologically plausible alternatives have been proposed mainly
for feedforward networks. These models include feedback alignment (FA) and
its variants [11,13], energy-based models such as equilibrium propagation [7,16]
and free energy models [3]. Below, we will give a short introduction to such an
algorithm, target propagation [2,10] which uses auto-encoders for credit assign-
ment. In a later section, we will introduce our proposed method to extend target
propagation to training multiple-output RNNs.

2.2 Target Propagation

Target propagation is a learning algorithm that uses learned inverse functions
between layers to back-propagate activations instead of error derivatives [2,10].

For a multi-layer supervised feed-forward network being trained input x and
label t, we denote the hidden value at the i-th layer as hi, the feedforward pass
sets the activations hi for i = 1, 2, . . . ,M where M is the depth of the network
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and hM is the output of the network. The relationships between the activations
are defined by

hi = fi (hi−1) = si (Wihi−1 + bi) , i = 1, . . . ,M (3)

where si is a non-linear activation function such as sigmoid(·), ReLU(·), Wi

and bi are the parameters for fi(·), the forward function at layer i, and h0

and hM are the input x and output of the network respectively. Let’s denote
the parameters between the i-th layer and j-th layer (0 ≤ i < j ≤ M) as
θi,j = {(Wk,bk), k = i+1, . . . , j}. Since hj is a function of hi, their relationship
can be written as hj = hj(hi; θi,j). Then a loss function L(hM (x; θ0,M ), t) is
defined for the output of the network hM with respect to the given label t.

Instead of back-propagating error derivatives, if for each hidden value hi, we
have a nearby target ĥi that would make the loss smaller, that is

L(hM (ĥi; θi,M ), t) < L
(
hM (hi(x; θ0,i); θi,M ), t

)
, (4)

then during training, we can simply update the parameters such that the hidden
values get closer to the layer-wise local targets, thus decreasing the prediction
loss. The local optimization problem can be set up by defining a loss function
for each layer i = 1, 2, . . . ,M ,

Li(hi, ĥi) = Li(hi(x; θ0,i), ĥi). (5)

We can update the weights at each layer with

Wi ← Wi − ηi
∂Li(hi, ĥi)

∂hi

∂hi

Wi
(6)

bi ← bi − ηi
∂Li(hi, ĥi)

∂hi

∂hi

bi
(7)

where ηi is a layer-specific learning rate.
We then needs to define the target at the output layer.

ĥM = hM − η̂
∂L(hM , t)

∂hM
(8)

where η̂ is the learning rate to control how close the target is to the output. Note
that although we need the derivative to define the last target, we don’t need to
use the chain rule as in backpropagation. To define the targets for intermediate
layers, we need to use an approximate inverse functions gi(·) at each layer which
satisfies

fi(gi(hi)) ≈ hi or (9)
gi(fi(hi−1)) ≈ hi−1. (10)

These inverse functions could be obtained by training auto-encoders between
adjacent layers. Once gi(·) is defined for each layer, the target for earlier layers
ĥi, i = M − 1,M − 2, . . . , 1) can be obtained using

ĥi = gi+1(ĥi+1). (11)



Training RNN with Target Propagation 437

or a linearly corrected version of it,

ĥi = hi + gi+1(ĥi+1) − gi+1(hi+1). (12)

This linearly corrected version of target propagation is called Difference Target
Propagation [10]. In this paper, we always use the linearly corrected version if
not stated otherwise.

In the next section, we will introduce a generalization of target propagation
through time for RNNs with multiple outputs and multiple credit assignment
paths.

3 Generalizing Target Propagation for RNNs with
Multiple Outputs
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DTP (ĥt+1)

t1 t2

Fig. 1. (a) Propagation of merged targets back in time. For step t, ht is the forward
activation ĥs

t is the step target set with respect to the step loss L(yt, tt) and ĥt is the
updated step target used for training obtained by merging the step target and back-
propagated target from future time steps. (b) Merging step target and back propagating
target linearly. This merging step ensures that only one target is propagated back in
time, similar to backpropagation in which the step gradients are accumulated when
being back propagated.

We first need to define a simple RNN model by specifying its forward path,

ht = F (xt,ht−1) (13)
= σ (Wxh · xt + Wh · ht−1 + bh) (14)

yt = softmax(Why · ht + by) (15)

where Wxh,Wh,bh,Why and by are the model parameters. Similar to TPTT
[12], we also define a step-wise approximate inverse function,

ht−1 ≈ G (xt,ht) (16)
= σ(Vh · ht + Wxh · xt + ch). (17)



438 P. Dai and S. Chin

This approximate inverse function can be trained as the decoder of an auto-
encoder, i.e. trained to reconstruct ht−1 from ht. In order for the proposed
method to work well, and more generally for target propagation to work well,
the inverse functions need to be good enough with the linear correction. It can be
trained as a denoising auto-encoder [10] so that it works well in the neighborhood
of the forward activations. In addition, we can also use a more complex function
such as a two-layer neural network to approximate the inverse function, but in
training, this requires the use of chain rule. In our derivation above, we choose
the inverse function to be in the same form as the forward step function.

If the target at step t is ĥt, then we can use difference target propagation
(DTP) and the approximate inverse function G(·) to define the target at step
t − 1 as

ĥt−1 = DTP(ĥt) (18)

= G(xt, ĥt) + (ht−1 − G (xt,ht)) (19)

This linear correction is used to stabilize the training [10]. We have defined how
the targets could be back propagated in time. Next, we will define the local step
targets generated by local step-wise losses. Let the loss at step t be Et = L(yt, tt)
where yt is the output and tt the correct label. Then the local step target could
be defined as

ĥs
t = ht − αi · ∂Et

∂ht
(20)

where αi is defined as the initial step size, controlling how far the local target
is from the corresponding activation (Fig. 1(a)). This step cannot be to large
because the inverse functions can only work well in the neighborhood of the
forward activations. Once the local step-wise targets have been defined, we then
need a way to merge these local targets while the targets are being back propa-
gated, i.e., defining the relationship between ĥt and ĥs

t.
Unlike backpropagation, in target propagation, the backward pass, like the

forward pass, are non-linear, so it is hard to define a merging strategy that
would make target propagation approximate backpropagation exactly. Thus, we
simplify this target merging process by making it linear (Fig. 1(b)),

et = ĥs
t − ht (21)

ĥt = DTP(ĥt+1) + et (22)

The above target merging rule has an intuitive interpretation: as the back prop-
agating target passes through the backward path, it accumulates local errors
similar to how backpropagation accumulates gradients during backward pass,
but in a non-linear way. Once the merged step targets ĥt are defined for each
step after the backward target propagation pass, we can define a local loss term
(e.g., using MSE(·)) for updating the weights Wxh,Wh and bh respectively,
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Wh ← Wh − αf

T∑

t=1

∂ MSE
(
F (xt,ht−1) , ĥt

)

∂Whh
(23)

bh ← bh − αf

T∑

t=1

∂ MSE
(
F (xt,ht−1) , ĥt

)

∂bh
. (24)

Since the weights are shared across time steps, the updates applied to the weights
are the sum of the updates cross all time steps. Note that this optimization
problem is local and doesn’t require chain rule as in backpropagation.

4 Experiments

4.1 Tasks

Copy Memory Task. In order to test the capability of the proposed method
in training recurrent neural networks and understand its limitations, we first
used the copy memory task commonly used to test the models’ ability to retain
information over long ranges. The first 10 elements in the input sequence are
drawn uniformly randomly from k symbols, and it is then followed by T − 1
blank symbol. A special symbol is followed to indicate that the model should
start to recall the first 10 elements in the input, which is followed by another
10 blank symbols. For the correct output, the first (T + 10) elements should
be blank symbols. When it receives the start recall symbol from input at the
(T + 10)-th position, it will output the first 10 elements of the input as its last
10 elements. If, instead of 10 elements, we only consider memorizing the first
3 elements as an example, with a delay T = 3, the input and corresponding
correct output will be {a, c, b, , , ∗, , , } and { , , , , , , a, c, b} where “ ∗ ” is
the start recalling signal symbol and “ ” is the blank symbol. In this task, the
information of the first 10 elements of the input should be kept in the model for
at least T steps. Thus, as we increase the delay T , it is harder and harder for
the network to recall the first 10 elements.

The model we use is a simple recurrent neural network model with 128 hidden
units and tanh(·) activation function. We use k = 8 symbols for the 10 elements
to be memorized and use another two special symbols as the start recalling signal
symbol and blank symbol. All symbols are one-hot encoded.

In this task, a memory-less baseline method is to output blank spaces until
receiving the start recalling symbol, and then output 10 random symbols. For
this strategy, the expected cross-entropy loss can be calculated as 10 ln(8)

T+20 , which
will be used as a baseline when comparing the training losses by different opti-
mization methods. Performance at this baseline means that the recalled sequence
is random and information of the first 10 elements in the input sequence has been
lost.

At each delay T , we perform a hyper-parameter search to find the best learn-
ing rates for backpropagation and the proposed target propagation respectively.
With a mini-batch size of 20, we generate training batches on the fly for a total
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of 25000 batches in total, and use the same validation set of 500 batches for val-
idation. After training for 25000 batches in total, we report the best validation
loss and accuracy.

Table 1. Results for the copy memory task using proposed target propagation method
and backpropagation. The baseline is calculated using 10 ln(8)

20+T
. The accuracy is the

percentage of correctly predicted sequences. For example, with a delay of 5 (total
sequence length = 25), a baseline model that outputs random symbols in the last 10
steps and blank elsewhere will have an accuracy of 1

810
≈ 9.31×10−10 in expectation. It

can be shown that our proposed target propagation managed to get a much lower loss
than baseline with high recovery accuracy up to a delay of 25 steps. Backpropagation
can only get loss close to the baseline, not able to propagate information for long
ranges. These two methods use the same weight initialization method.

Delay (T ) Target prop Backprop Baseline

Loss Accuracy Loss Accuracy Baseline loss

5 3.59 × 10−3 100% 0.6899 0% 0.8318

10 1.30 × 10−3 100% 0.5809 0% 0.6931

15 1.34 × 10−4 99.99% 0.5182 0% 0.5941

20 5.70 × 10−3 98.32% 0.5205 0% 0.5199

25 1.36 × 10−2 92.88% 0.4625 0% 0.4621

Table 2. Results for the sequence expansion task using proposed target propagation
method and backpropagation.

Sequence length (T ) Target prop Backprop

Loss Accuracy Loss Accuracy

10 0.0005 100.00% 0.0001 100%

20 0.0018 99.34% 0.0005 100%

30 0.3233 3.62% 0.0007 100%

40 1.0771 0% 0.0012 99.49%

The result is shown in Table 1. The accuracy is the percentage of correct
sequence predictions in the validation set. As we can see, our proposed target
propagation method managed to beat the baseline and achieve a high prediction
accuracy until a delay of at least 25 steps. Backpropagation can only achieve a
loss at a similar level as the memory-less baseline, and with an accuracy of 0%,
it cannot output a single correct sequence out of the 10000 validation samples.

This results shows that target propagation is able to propagate error informa-
tion over long range while backpropagation cannot. In order to see if this is due
to the exploding/vanishing gradient problem, we computed the spectral radius
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Fig. 2. The training loss of backpropagation and the proposed target propagation
method for the copy memory task with a delay of 15 steps. Each step is a single weight
update with a mini-batch of training examples. The baseline loss is from a memory-
less strategy: outputting blanks until receiving the start-recall symbol, followed by a
random sequence of 10 symbols. In target propagation, the first 1000 steps are used to
train inverse function only, thus the loss doesn’t change.

Fig. 3. The spectral radius of the transition weight matrix Wh during learning for
proposed target propagation method and backpropagation.

of the hidden-to-hidden transition weight matrix Wh defined as the magnitude
of the largest eigenvalue. From Fig.3, we can see that the spectral radius of the
transition weight matrix Wh stays relatively stable around value 1.0 for target
propagation. However, the spectral radius of the matrix during backpropagation
is not stable and deviates significantly from 1.0. Although this figure only shows
the spectral radius for one trial, this applies to other trials as well. In addition,
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we observed that a stable spectral radius around 1.0 during training is correlated
with better training results.

Sequence Expansion Task. The copy memory task tests the ability of the
learning algorithm to propagate information across long ranges. One drawback of
the copy memory task is that regardless of the learning algorithm we use, it will
converge quickly to the memory-less baseline solution, and the only challenge
remaining is to propagate the error information from the end to the beginning
of the sequence without much interference from intermediate positions along the
sequence, similar to training a many-to-one RNN model. Thus, we designed a
second synthetic task, sequence expansion task, in which each step will generate
useful error information during the training process.

In the second task, sequence expansion task, the input is a sequence of length
T . The first T/2 elements are drawn uniformly randomly from a set of k symbols,
and the second half are all blanks represented by a special blank symbol. The
task is to duplicate each element of the first half exactly once. For example,
the correct output of the input sequence {a, c, b, ∗, ∗, ∗} will be {a, a, c, c, b, b}.
The output will have the same length as the input but without blanks. As the
sequence length T increases, in order to make correct prediction, the model
needs to memorize the (T/2)-th element in the input for at least (T/2−1) steps.
In contrast to the copy memory task, there is no simple memory-less baseline
method and the error information at each step will be useful in training.

As the results shown in Table 2, backpropagation can solve this task easily,
while target propagation could not when sequence length grows to greater than
30. The likely explanation is that backpropagation is better at combining error
gradients when they are being back propagated in time since the operation is
linear. While for target propagation, when there is useful error information at
each step, it has difficulty merging them due to the non-linearity in the target
back propagation process.

When comparing these two tasks, we can see that backpropagation usually
suffers from vanishing/exploding gradient problem when the credit assignment
path is too long. Target propagation is better at propagating error information
across long ranges as long as there are not many merging targets along the credit
assignment paths.

5 Conclusions

In this paper, we generalized target propagation to training recurrent neural
networks with multiple outputs and showed that it is better at propagating
long range error information compared to backpropagation, which usually suffers
from the exploding/vanishing gradient problem. However, when the tasks involve
many credit assignment paths that needs to be merged, such as the case in
the sequence expansion task, backpropagation generally performs better. This
might be due to the linear nature of backpropagation when the derivatives could
be simply added along the backward pass. A potential future improvement for
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target propagation for RNN could be truncating the propagating targets at every
a few steps, similar to truncated BPTT. The linear merging operation in the
proposed method could potentially be replaced by a single many-to-one inverse
function that only produce one output without the need for merging the targets
explicitly. In principle, the proposed method could potentially be applied to
learning in arbitrary computation graphs when there might be intersecting credit
assignment paths.
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