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Abstract Face recognition (FR) is a natural and intuitive way for human beings
to identify or verify or at least get familiar and interact with other members of
the community. Hence, human beings expect and endeavor to develop similar
competency in machine recognition of human faces. Due to the rapid increase in
computing power in recent decades and the need to automate the FR tasks for many
applications, researchers from diverse areas like cognitive and computer sciences
are making efforts in understanding how humans and machines recognize human
faces respectively. Its application is innumerable (like access control, surveillance,
social interactions, e-commerce, just to name a few). In this chapter we will review
two aspects of FR: machine recognition of faces and how human beings recognize
human faces. We will also discuss the recent benchmark studies, their protocols and
databases for FR and psychophysical studies of FR abilities of human beings.

1 Introduction

Among many biometrics, such as finger print, palm print, ear, iris, gait, etc., face
is considered to be most user-friendly and intuitive as the authentication can be
performed at a distance, even without the knowledge or cooperation of the subject.
The main difficulties that face recognition (FR) algorithms have to deal with are two
types of variations: intrinsic factors (independent of viewing conditions) such as age
and facial expressions and extrinsic factors (dependent on viewing conditions) such
as pose and illumination. Large amount of work has been done over the last three
decades to address these issues. Starting from the pioneering work of Eigenfaces by
Pentland et al. [1] to the latest results of DeepFace by Wolf et al. [2] and DeepID by
Wang et al. [3], researchers are able to reduce the recognition error rate (%) from
two digits to near perfection [4].
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Although high recognition rates are reported in the academic papers, there are
large gaps between the reported performance in constrained framework and their
performances in the large scale unconstrained environment. In this study, we will
discuss the recent face recognition vendor test (FRVT 2013) [5] conducted by the
National Institute of Standards and Technology (NIST) as a third party independent
evaluator of FR algorithms. We will discuss these gaps, the difference in old and new
benchmark protocols and results reported in the recent benchmark study of large-
scale unconstrained FR by Stan Z. Li et al. [6] on the well-known ‘labeled faces
in the wild’ (LFW) database in 2014. Unlike numerous previous studies on LFW,
this large scale unconstrained FR algorithm evaluation with new protocol using
entire LFW database reveals that only 41.66 % correct verification rates (CVR)
can be obtained at 0.1 % false acceptance rates (FAR) and 18.07 % open-set face
identification (FI) rates at rank 1 and 1 % FAR. As these numbers show that FR
problem is still largely unsolved, we will devote more attention and efforts in
reviewing new invariant feature representations and learning algorithms that can
advance the algorithm development for FR.

In addition to machine recognition of faces, we will review how human beings
perceive human faces for recognition. We respond to faces differently from other
classes of objects. Interaction involves a certain level of social cognition that needs
to be adapted for each situation. Research on human face processing is now moving
away from the use of static face stimuli and delving into dynamic faces to simulate
a more realistic context for FR and processing. This endeavor gave rise to the
formulation of two popular hypotheses by O’Toole et al. [7], in an attempt to
explain the benefits that dynamic faces impart on human recognition of faces: the
supplemental information hypothesis and representation enhancement hypothesis.
However, both hypotheses are unable to explain how humans are able to learn and
recognize a face with much fewer templates than machines. What are the possible
strategies that could optimize learning of novel faces, even under challenging
conditions? In this chapter, we analyze the findings for human psychophysics
experiments that investigated human performance in FR across varying conditions
of illumination, expression, viewing perspectives, and time lapses in age. We
suggest possible FR strategies utilized by humans that could be incorporated into
machines to pave the way for next-generation recognition systems.

In Sect. 2, we will discuss briefly the challenges involved in FR and its general
pre-processing and normalization steps. In this section, we will also study the
dynamics of FR in unconstrained environment involving emerging techniques.
We will do a review on FRVT 2013 and some of the emerging databases, their
findings, protocols and summary in Sect. 3. Motivated by the limitations of machine
recognition of faces as discussed before, we also do a comprehensive review for
dynamics in human recognition of faces in Sect. 4. It would help us to understand
how we human beings solve these problems and challenges posed by machines. We
also share the experimental results of human performances in dynamic FR. Finally
in Sect. 5, we conclude and discuss the future trends.
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2 Machine Face Recognition: Its Existing Challenges
and Emerging Methods

Human face recognition plays an important role in our daily life. We utilize our
visual memory to recognize an individual [8] or at least able to recall seen / unseen
(familiar or unfamiliar) individual faces [9]. For humans, FR is the most natural and
common way to identify and/or verify individuals. It is so intuitive and non-intrusive
(without user intervention) that we aim to replicate this capability into machines.
Even after four decades of intensive research in machine FR, the problem is still far
from solved for large scale unconstraint FR. So what are the existing challenges that
extirpate us from achieving human like high recognition rates?

2.1 Challenges for Face Recognition

For unconstrained FR, the challenging factors are: Illumination variation, Pose
and viewpoint variation, Expression variation, Aging, Scale variation, Occlusions
and Motion blur. One or in combination with others, have caused tremendous
challenging problems for large scale unconstrained FR. Below we discuss each of
these problems briefly.

2.1.1 Illumination Variation

A person’s face appears quite different at different times throughout the course
of a video capturing when it passes through underneath lights or some strong
lights in certain directions. Illumination also results in self shadowing making the
problem even harder. Some samples images of a person with different illumination
conditions from YaleB database [10] are shown in Fig. 1. A large amount of research
work has been devoted to study and alleviate this problem [11–13], however, all
of them studied the problem of illumination under constrained (studio settings)
environment. Very few studies are performed on real-life unconstrained illuminating
conditions [14].

2.1.2 Pose and Viewpoint Variation

In natural settings, either the subject or/and viewer are moving. Capturing facial
images from a stationary or moving (wearable devices like Google Glass) camera,
the moving faces can lead to shots from a variety of angles causing the corre-
spondences between pixel locations and points on the face to differ from image
to image. Since human face is a 3D structure, using only 2D images to reconstruct
unknown poses can become an ill-posed problem. Camera capturing human face
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Fig. 1 Appearance of a person under different illuminating conditions from YaleB database.
‘A+035E+15’ implies that the light source direction with respect to the camera axis is at 35ı

azimuth (‘A+035’) and 15ı elevation (‘E+15’). (Note that a positive azimuth implies that the light
source was to the right of the person while negative means it was to the left. Positive elevation
implies above the horizon, while negative implies below the horizon)

Fig. 2 Sample images from the FERET database [15] for one person with varying degree of poses

images results in in-plane or out-of-plane rotations as shown in Fig. 2. The former is
a pure 2D problem and can be solved much more easily, like placing the eyes on the
same horizontal axis [16]. However, the latter is very challenging and is also known
as in-depth rotations. When part of a face is invisible in an image due to rotation
in-depth, the facial texture is recovered from the visible side of the face using the
bilateral symmetry of faces. Human face is limited to three degrees of freedom in
pose, which can be characterized by pitch, roll and yaw angles. Extracting accurate
face pose information in terms of these angles has always been a very challenging
problem in FR literature [17, 18].

2.1.3 Expression Variation

Although all faces share the same configuration of two eyes, a nose and a mouth,
forehead and cheek regions, signification in-depth deformations occur because of
our expressions. Some sample images from AR database [19] are shown in Fig. 3.
They pose serious problems to FR performance [20].
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Fig. 3 Sample images from the AR database for one person with 14 different expressions

Fig. 4 Sample images of one person in different ages

2.1.4 Aging

Human face changes considerably along with aging, it gets effected in different
forms at different ages. During one’s younger years the cranium’s shape of the
face gets more effected whereas they are more effected in terms of wrinkles and
other skin artifacts during one’s older age. Human face also undergo growth related
changes and changes arising from environmental effects that are manifested in the
form of textural, color and shape variations. Some sample images of a person in
different ages (from [21] database) are shown in Fig. 4. Extracting features that
are invariant to large variations in ages for FR is a very challenging problem.
Moreover, collecting and archiving face images across different ages in different
years (decades) itself is non-trivial effort.

2.1.5 Scale Variation

Because of moving cameras and/or moving persons, face images are captured at
different scales resulting in different resolutions. Some samples images captured at
1, 2, 3 and 4 m with no zooming condition using Google Glass are shown in Fig. 5.
The original image resolution in Google Glass is set to 360 � 640 and the cropped
images shown in Fig. 5 are of 150 � 140 dimensions each. Existing research shows
that a high resolution 2D face image is better for FR than one 3D face image [22].
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Fig. 5 Sample images of one person captured at 1, 2, 3 and 4 m (left to right) with no zooming
condition using Google Glass. The face sizes are 90�90, 50�50, 36�36 and 21�21 respectively

Fig. 6 Sample images of three persons, one in normal and two partially occluded conditions
(opaque glass and scarp)

Fig. 7 Sample images of three persons with motion blur captured using Google Glass. In all the
cases face and eyes detections were successful [23]

2.1.6 Occlusions

Objects in the scene can block a face resulting in reducing the visible area of the
face. Common cases like wearing opaque glasses can cause severe occlusions to the
eyes areas. Due to occlusions the amount of face information captured is reduced,
which makes the FR problem more difficult (Fig. 6).

2.1.7 Motion Blur

Either a moving face or/and a moving camera can cause motion blur. Also when
the camera exposure time is set too long or the head moves rapidly, motion blur
can occur. Distinctive characteristics of a face are lost when they are blur resulting
in poor FR performance, such as in wearable devices [23]. Some samples images
are shown in Fig. 7.
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Fig. 8 A general face recognition system

2.2 Pre-processing and Normalization

In the general FR framework as shown in Fig. 8, numerous researchers perform
detection of face and its features (like eyes) [16, 24]. Detected face and facial
features are used for face alignment. Generally, eyes are placed on the same
horizontal axis and at fixed distance (pixels) apart. A face mask is then applied
to mask out the non-face portions (like the background) arising above the shoulder
and below the chin. It also helps to remove the hair region which has high variations.
This whole process is called pre-processing or normalization step. If facial features
(like eyes) are detected wrongly then the subsequent processes may fail or the
system will achieve very low recognition accuracy. The dependency between the
detection precision and recognition accuracy has been studied in [25] by Kawulok
et al. In recent years, face and its features detection has been improved to a
very large extent. However, for unconstrained scenarios they are still challenging
[26, 27]. Low-dimensional features are extracted from high-dimensional objects like
face images and stored into the database. When new images (of enrolled users or
imposters) are captured, they also undergo similar processes and matching is done
with the features stored in the database. Finally, a match ID or non-match (unknown)
outcome is given as output.

2.3 Trends in Unconstrained Face Recognition:
Promising Directions

Over the past three decades researchers from diverse fields are making efforts in
improving the FR algorithms. We have tried to summarize the popular or distinct
algorithms that are developed over these years in Fig. 9. It is beyond the scope of
this chapter to discuss each of these approaches. For details of the methodologies
belonging to holistic, component and hybrid based approaches, the readers are
advised to refer the FR survey paper by Zhao et al. [28]. For methodologies grouping
based on three levels of taxonomy of facial features, the readers can refer to the
paper by Klare et al. [29]. A recent 2014 survey on single and multimodal FR can
be found in [30]. There are also a few papers that review FR across pose variations
[17, 18], illumination variations [31, 32], aging [33] and forensic applications [34].
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Fig. 9 Evolution of face recognition algorithms

The recent interest in FR is motivated from a few promising directions, which
are (1) approaches that use the biologically motivated theory of invariance identity-
preserving transformations, (2) video-based FR and (3) deep-learning based con-
volutional neural-network framework. Below we discuss these promising directions
and a few recent successful examples.

2.3.1 Methods Using Invariance Identity-Preserving Transformations

It is evident from the recent literature reviews on unconstrained FR that in
order to develop the next generation FR algorithm that can perform better FR
as compared to humans and even surpass human performance, we would need
more challenging databases as compared to the past. Leibo et al. [21] has tried to
come up with a unconstrained FR database which is much more challenging as
compared to the previously well studied labeled faces in the wild (LFW) [35] and
YouTube face image (YTF) databases [14]. They named this database as subtasks
of unconstrained face recognition (SUFR) [21]. Their idea is to isolate faces with
specific transformation or a set of transformations for different subtasks to suppress
the common computational problem of FR which is transformation invariance to
various translations, illuminations, rotations and scalings. Leibo et al. [21] produced
six artificial face image datasets using 3D graphics based on this concept, where
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each of them contains face images created using a set of transformations with
various cluttered/homogenous backgrounds. Although they proposed a good idea to
handle the unconstrained conditions resulted from various transformations but they
are still using affine transformation. They have not included the difficult variations
and deformations like face expression, along with pose and aging. So, this approach
is still incomplete and cannot be used in most of the real-world conditions.

Motivated by the recent theory of transformation invariance [36], Liao et al.
[37] used the SUFR database for face verification (FV) following the same idea
of finding the invariance features using various transformations. A signature or
invariant representation for each image is computed with respect to a group of
transformations. As the inner product of the image and transformed template is the
same as the inner product of the template with the same transformed image, their
empirical distribution function of the inner products can be used as signature for
each image. Although the authors reported a good performance of this model but it
may assume some restrictions where the transformation is non-affine. For example,
the authors stated that this model may work in case of non-affine transformation
when it is restricted to certain nice class such as the 2D transformation mapping of
the face image to its frontal view is similar to transformation of another face within
the same scene. Also, as this model depends on the distribution of the inner product
of an image and transformed template, it means that the transformation has to be
known or can be measured in advance which is not applicable in many practical
cases. Finally, it does not consider the background variations in all circumstances.

A vast number of FR research follow the algorithmic flow of face detection !
normalization ! face recognition [16, 28, 38, 39]. However, the recent theory of
invariant recognition by feedforward hierarchical networks [40], like HMAX [41,
42], and other convolutional networks [43], or possibly the ventral stream, implies
an alternative approach to unconstrained FR. The main idea is to remove traditional
FR pipeline techniques such as face cropping, alignment and normalization and use
the whole image (possibly with a face in it) for recognition. This is a biologically
motivated way for performing FR as we human beings do not use normalization
explicitly while recognizing a face [44].

Liao et al. [44] used a three-levels HW-Module architecture (in honor of Hubel
and Wiesel’s original proposal for the connectivity of V1 simple and complex cells
[45]) to obtain the face signature (identity) of an individual. At level one, face
is detected, nearly cropped and low level features are extracted at different positions
and scales for each image in the training set. These features are stored in vectors as
training templates. Then they compute dense overlapping set of windows for each
test image, convolved them with training templates and applied max pooling to get
new templates. Finally, matching process is done at the third layer by obtaining
the dot product between these templates and the training templates and scores are
computed for each test image. In that work, Liao et al. [44] tried to reduce the
complexity of these processes by hashing and rank approximation using principal
component analysis (PCA). They applied this model on different unconstrained
databases like LFW, SUFR-W (SUFR-in the wild), LFW-J (LFW-jittered) to get
state-of-the-art FR accuracy rate of 87.55 %. This accuracy is near to other popular
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FR approaches that use cropping, alignment and normalization of the testing
set [46]. So, they proved experimentally that their biologically plausible hierarchical
model can effectively replace face detection, alignment and normalization pipelines
[44], however, these techniques are of limited use with non-affine transformations.

2.3.2 Video Based Face Recognition

In the machine face recognition literature, majority of the research has focused
on improving the ability of FR using static (still) face images. As pointed out
in [47], this is primary because of factors such as (1) the need to constrain FR
problem, so that the researchers can focus on specific type(s) of FR problem (one
in combination with other, such as illumination and/or expression in AR database
[19]) and assume all other factors as more or less constant, (2) computational or
hardware constraints for both acquiring, processing and storing large amount of
face images, (3) the large amount of legacy still face images (e.g. ID cards, mug
shots) and (4) its limited availability (or sharing such as in social networks [48, 49]).
Today, many of these constraints are no longer valid. A large number of researchers
are working on computational, biological and cognitive aspects of FR [50–52],
tackling the problem well and coming up with new model, theory and challenging
unconstrained databases [53]. FR using still images has witnessed an exponential
decrease in error rates [5]. Hardware devices (like digital cameras) for acquiring or
capturing images are becoming less and less expensive. Availability of distributed
and parallel computing has helped in processing a very large number of images.
Lastly, people are very active in sharing images/videos across multiple domains,
internet and channels (like social networks), hence they are more readily available
as compared to the past [48, 49].

As described earlier, compared to legacy static (still) images, videos help in
enhancing FR process as additional information can come from motion and other
aspects such as multiple faces of different poses, expressions and illuminations.
Firstly, there are techniques based on feature extraction from video input, such
as [54]. These features may represent the relation between facial features or the
invariant structural features that do not change under different conditions such
as skin-model based and color-based approaches. Also global features are useful,
such as shape of the face, skin and size or detail features of the internal face
components (like eyes and nose). Secondly, there are methods based on probability
density function. They deal with face images as random variables of certain
probability where the similarity between images can be measured by similarity of
their corresponding probability density function. Thirdly, some techniques use the
dynamic variance of faces in images to enhance the face detection and identification
by integrating features extracted from sequence of images like motion information.

Rowden et al. [47] proposed two techniques to fuse information from image
sequences in unconstrained conditions using YouTube faces database [14]. Their
multi-frame fusion deals with video as a group of single still frames. Each frame in
the query video is matched to the corresponding video in the database and similarity
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score is computed and measured as a part of the verification process. Scores from
all images are then combined by averaging, max, min and median rules. Fusion can
also be done to combine matchers score before or after the multi-frame fusion using
the similar rules. The former is called the multi-matcher multi-frame (MMMF),
while the latter is called multi-frame multi-matcher (MFMM) technique. These
techniques are tested using three commercial off-the-shelf algorithms. According
to their results, the accuracy of identification using frames fusion is better than still
images which means that videos are better than still images to recognize faces in
unconstrained conditions. Also, fusion of more than one matchers achieves better
performance. Although good performances are achieved by these techniques but
matching each frame in query video with all frames in the database videos may
take large computation time. Also, as the final decision is a result of combining
more than one matcher scores, it may lead to failure if some of the matchers scores
are very low. This could happen especially in unconstrained conditions such as low
resolution and occluded face images.

Li et al. [55] proposed a technique to decrease the complexity of identification
on large-scale databases by representing each subject in all relevant videos by one
Eigen-PEP (probabilistic elastic part) representation with invariant length over
different YouTube face videos. This representation can be used later in the match-
ing process to make identification using joint Bayesian classifier. This approach
achieves high performance identification of 85.04 % on YTF dataset and verification
rate of 88.97 % on LFW dataset.

Other researchers like Chen et al. [56] tried to exploit the temporal information
between video frames using joint sparse representation. They divided the database
into various partitions, each partition has images of the same pose and illumination
for the same face from the same video. Each video is represented by many partitions
which is learned under strict sparsity to find the best representation of each face in
each of the partitions. Same methodology is applied for the test images, used in
the later matching step. Using this technique, the best identification rate 98.04 %
is achieved on UMD dataset [57], where each subject has at least six sequences of
images. This technique takes into account the illumination and pose conditions but
have not exploited all the unconstrained conditions.

2.3.3 Deep-Learning Framework for Face Recognition

Recently, an emerging class of FR algorithms using large number of diverse yet
labeled face images and deep neural nets (DNN) have shown promising recogni-
tion performance in unconstrained environment. The generalization capability of
many machine learning tools like support vector machines (SVM), PCA, linear
discriminant analysis (LDA), Bayesian interpersonal classifier tend to get saturated
quickly as the volume of the training increases [58–61]. DNNs have shown to
perform significantly better as compared to traditional machine learning algorithms
[2] when trained with large number (millions) of diverse images, for example,
images appearing in Facebook [49] at different times (and not similar appearing
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faces in videos). However, DNNs requires large amount of training data without
which the network fails to learn and deliver impressive recognition performance.
Moreover, training such massive data requires huge computational resources, like
thousands of CPU cores and/or GPUs. Zhu et al. [62] trained DNNs to transform
faces from different poses and illumination to frontal faces and normal illumination.
They used features from the last hidden layer and transformed the faces for FR. Sun
et al. [63] used multiple DNNs to learn high level face similarity features and used
restricted Boltzmann machine for FV. They extracted features from a pair of face
images instead from a single face.

DeepFace developed by Taigman et al. [2] has become very popular among the
FR society. Primarily they have two good contributions in their work. Firstly, a 3D
alignment process, where they used 3D modeling of the face based on fiducial
points, that is used to warp a detected aligned 2D facial crop to a 3D frontal
mode. They extracted fiducial points by using a support vector regressor trained to
predict point configurations from local binary pattern (LBP) histograms based image
descriptors [64]. For the alignment of faces with out-of-plane rotations, Taigman
et al. used a generic 3D shape model and registered a 3D affine camera. Using these
they transformed the frontal face plane of the 2D aligned crop to the image plane of
the 3D shape [2].

Secondly, Taigman et al. [2] developed an efficient DNN architecture using 4
million images from 4000 persons. Face detection and localization are performed
by extracting 67 fiducial points on each of the face images. Then, triangulation and
frontalization are done to 3 RGB layers which are feed into 32 filters (convolutional
layer 1: C1) as shown in Fig. 10. The output of this step includes 32 feature maps.
M2 layer is a max pooling to get the maximum of these maps over 3 � 3 spatial
neighborhood. Convolutional layer 3 (C3) contains filters which extract the low level
features. So, C1, M2, C3 are responsible for features extraction. Three layers (L4,
L5 and L6) are used to apply filter bank where every location in feature map learn a
set of filters. Finally, the last two layers are connected to get the correlation between
the features extracted. This DNN involves more than 120 million parameters
using several locally connected layers without sharing weight, unlike the standard
convolutional layers. DeepFace when applied to LFW and YTF databases achieves
and an impressive accuracy rate of 97.35 % and 92.5 % respectively.

Fig. 10 DeepFace learning framework, from Taigman et al. [2] (Best viewed in color)
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Another notable deep convolutional network (ConvNets) architecture called
DeepID is developed by Sun et al. [3]. It contains four convolutional layers (with
max-pooling) to extract features hierarchically. DeepID features are taken from the
last hidden layer neuron activations of the ConvNets, followed by the softmax output
layer indicating identity classes. Weakly aligned face image patches are used as
inputs to each of the ConvNet, which extracts local low-level features. Number
of extracted features gets reduced along the feature extraction hierarchy until the
last hidden layer (DeepID layer) is reached. In this DeepID layer low dimensional
predictive features are formed, which can predict an impressive 10,000 identity
classes [3]. They have pioneered CelebFaces and CelebFaces+ face databases. The
latter being a superset of the former contains 202,599 face images of 10,177 celebri-
ties from the Internet. People in LFW and CelebFaces+ are mutually exclusive.
Using their proprietary (not publicly available) databases and highly compact 160-
dimensional DeepID features, they could achieve 97.45 % face verification accuracy
on LFW, using weakly aligned face images [3].

Although, there are great and promising performance enhancement in these
works, they still need to deal with very large scale evaluation on unconstrained FR
(described in the Sect. 3.2.3: old and new protocol on LFW) in order to get good
results. In the next section we review some of the benchmark competitions and
evaluations done by independent organization and large research organizations.

3 Evaluation and Benchmark Competitions

The development of FR technology has started in 1993 and over of the period of
time it has evolved to a very large extend including its applications from large scale
nationwide deployment to ubiquitous wearable device computing. We have tried
to summarize the entire evolution of FR benchmarks, competitions and algorithm
evaluations in Fig. 11. The first FR technology test [65] took place in 1996 and
this has lead to multiple FR vendor test conducted in 2000, 2002, 2006 and 2013.
Links to all these FR vendor tests can be found in [66]. In between there are
other competitions that took place, which include face recognition grand challenge
(FRGC) 2005 [67], multiple biometric grand challenge (MBGC) 2009 [68], face and
ocular challenge (FOCS) 2009 [69], good, bad and the ugly face challenge problem
(GBU) 2009 [70] and multiple biometric evaluation (MBE) 2010 [71]. Furthermore,
FR technology evaluation has been extended to mobile devices/environment like
MOBIO in 2013 [72]. Generally, each of these competitions and evaluations takes
place over 1–3 years time. Recently, due to the increasing popularity of social
network and inexpensive “point-and-shoot” camera technology, people would just
want to take pictures or videos, upload and recognize their friends, family and
their acquaintances more-or-less automatically. This has spurred the point and
shoot FR challenge (PaSC) in 2015 [73]. Going into details of each of them is
beyond the scope of this chapter. In this section, we review some of the benchmark
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Fig. 11 Face recognition benchmarks, competitions and algorithm evaluations. (Best viewed in
color)

evaluations and competitions that took place over the last few years, their protocols
and summary of the evaluations. Later, we also discuss the emerging databases
resulting from these competitions and evaluations.

3.1 FRVT 2013 Findings and Conclusions

The Face Recognition Vendor Test (FRVT) is a series of public evaluations for
FR systems built by leading FR technology vendors. FRVT has been organized
by the National Institute of Standards and Technology (NIST) in 2000, 2002,
2006 and 2013. FRVT succeeded the previous FERET evaluations held in 1994,
1995 and 1996 [15]. The latest one was FRVT 2013 [5], which started in middle
2012 and lasted until the mid of 2014. FRVT uses a large database to test both
the accuracy and computational efficiency of various FR algorithms. The database
consists of three parts. The first part is the law enforcement images (LEO) mugshot
faces, which comprises about 86 % of the LEO database. The remaining 14 %
images of the database were recorded by a webcam, which is referred to as LEO
webcam. In addition, a smaller set of visa images consisting of well controlled
frontal photographs of adults and children is also used. Besides the three types of
face images, some sketch images based on the FERET dataset were also collected
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to support research in face sketch synthesis and recognition [74, 75]. For the
competition, there are five tracks for the participants to participate:

1. Class A: Compare one-to-one verification (determine if two samples originate
from the same person or not) accuracy.

2. Class B: Compare one-to-one verification accuracy but with an enrollment
database present. This track was discontinued after the 2010 evaluation. Accu-
racy gains over class A are available.

3. Class C: Compare one-to-many identification (search to determine either that the
person is not enrolled, or to determine the identity of the person). The FRVT
test only evaluates on “open-set” identification algorithms because real-world
applications are usually “open-set”. Here, the “open-set” refers to the situation
where a test face image might not be enrolled. The various partitions with
numbers of enrolled individuals are 20,000, 160,000, 640,000 and 1,600,000.

4. Class D: Compare accuracy of determining the sex or age of a person in one or
more input images. This separate class D track tests on determining whether the
face in an image is frontal or non-frontal.

5. Class F: Find effectiveness of the algorithms that take one or more non-frontal
images of a person as inputs and outputs one or more frontal images of the same
person.

6. Class V: Find effectiveness of the algorithms that execute one-to-many identifi-
cation of persons with frames extracted from surveillance video sequences.

The error measures used in FR evaluations such as for Class C are usually false
alarms (search data from a person who has never been seen before is incorrectly
associated with one or more enrollees’ data) and misses (a search of an enrolled
person’s biometric does not return the correct identity).

From the results of algorithms submitted to the FRVT 2013 [5] for evaluation
from various commercial vendors (NEC, Cognitec, etc.), the following points are
observed:

(1) The age of the subjects strongly affects the identification accuracy. For all the
algorithms evaluated, the older the person, the easier they are to be recognized.
For children, both false alarm rate and miss rate are higher than other age
groups. And infants are very difficult to identify.

(2) Sketch images are also used to match face photographs. For the most accurate
algorithms, the rates of face not being among the top 50 candidates are quite
high with 73.3 % for 3M/Cogent, 73.8 % for NEC, 78.5 % for Toshiba, 80.3 %
for Morpho and 81.5 % for Neurotechnology.

(3) The image quality improvement is the largest contributor to the increase in
recognition accuracy. The results show that there is a fourfold reduction in miss
rate using high-quality mugshots vs. low-quality webcam images.

(4) The 2010 NIST FR evaluation showed that retention and use of all historical
images increase accuracy considerably [76].

The FRVT 2013 provides independent evaluations of commercially available FR
systems. These evaluations are aimed at helping the U.S. government agencies best
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evaluate and determine the scenarios where these technologies can be deployed.
It also helps the FR research community to identify the limitations of current FR
technologies and future research directions for improvement. As for the limitation
of the dataset provided in FRVT 2013, neither the mughots nor the visa images have
ideal properties. The mugshot images have too much pose variation while the visa
images are degraded by the acquisition process and the JPEG compression.

3.2 Emerging Databases

3.2.1 The Good Bad and the Ugly (GBU) Datasets

In the past four decades, performance of FR on frontal still faces in controlled
environment has improved significantly and achieved near perfect performance.
However, frontal faces taken with uncontrolled environment (illumination) and
expression remain challenging. As part of the Face and Ocular Challenge Series
(FOCS) [69, 76], the Good, the Bad, and the Ugly (GBU) dataset tries to encourage
algorithms that work well on matching “hard” face pairs but not at the expense of the
performance on “easy” face pairs [70]. The GBU dataset consists of three partitions
of frontal still face images, “Good”, “Bad” and “Ugly”. The three partitions were
of different “difficulty” levels with the “Good” being the easiest partition, “Bad”
being the average difficult partition and “Ugly” being the most challenging partition
based on the analysis of results of the FRVT 2006 challenge [77, 78]. Some sample
images are shown in Fig. 12.

Each of the three partitions has two sets, the target set and the query set. Each
of the target and query sets in the three partitions contains 1085 images for 437
distinct people, 117 people with one image, 122 people with two images, 68 people
with three images and 130 people with four images. The fusion algorithm based on
the fusion of the top three performers of FRVT 2006 [78] were used to evaluate
the similarity of face pairs and construct the three partitions. For FR, many factors
contribute to the recognition performance with the big four factors being subject
aging, pose variation, illumination and expression. The GBU dataset controls for
subject aging, pose variation and the major factors that affect recognition are
illumination and expression, as shown in Fig. 12. In order to avoid over-fitting on the
data, the protocol of GBU does not allow training on images of subjects in the GBU
dataset. A baseline algorithm, Local Region PCA (LRPCA) [70] is presented and
evaluated to illustrate the training and evaluation protocol and provide a baseline
performance for comparison.

Besides the original goal of stimulating research on “hard” FR problems, the
GBU dataset can also be used to study other factors that could contribute to
improving FR performance such as in [79]. In [79], the GBU dataset has been used
to study the demographic effects on estimates of automatic FR performance. Based
on their findings, the measures of FR performance rely both on the distribution of
faces of matched identity as well as mismatched identities. They showed that the
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Fig. 12 Sample face images of 1 person from the GBU dataset, from Sinha et al. [4, 69]. The
Good pair is referred to “Good”, challenging pair as “Bad” and very challenging pair as “Ugly”
(Best viewed in color)

demographic diversity differences in the non-matching distribution can radically
change the estimates of FR algorithm performance. Thus, it poses a new challenge
to find a method for tuning algorithm performance to the changing demographic
environments where these FR systems will be used reliably.

3.2.2 FR in Mobile Environment

The MOBIO database provides the FR community a bi-modal (audio and video)
dataset recorded in a less controlled environment by mobile phones. It also comes
with an evaluation protocol together with a baseline algorithm to compare different
algorithms developed by the participants of the FR competition in mobile environ-
ments hosted at the 2013 International Conference on Biometrics [80, 81]. The goal
of the dataset is to stimulate research in the field of multi-modal recognition in a
mobile environment. For first-person-view (FPV) or egocentric views face images,
Mandal et al. [27] reported a database comprising of face images captured using
wearable devices like Google Glass and head mounted web cameras.
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Fig. 13 Sample face images of two persons from the MOBIO dataset. There are large variations
in pose, illumination, makeups and hair style. (Best viewed in color)

MOBIO database was mostly collected by mobile phones with subjects speaking
to a handhold mobile phone by answering a set of predefined questions as described
in [80]. In total, the dataset consists of 61 h of audio-visual data recorded over a
period of one and a half years. The participants consist of 100 males and 52 females,
each of whom has 192 unique audio-video samples. For each participant, two phases
were recorded, each of which contains six sessions of recordings, and the sessions
are separated by several weeks. Some sample images are shown in Fig. 13.

Since the videos are recorded by mobile phones, the dataset has created the
following challenges:

• The pose and illumination conditions vary across different samples,
• The quality of the speech recorded varies and
• The environments in which the videos are recorded vary in terms of illumination,

background and acoustics.

For evaluation, the dataset is split into three non-overlapping partitions for training,
development and evaluation. The training set is used to train the models, e.g.
the project matrices for PCA. These images can be used as negative examples
in a classification system for some systems. They can also be used for score
normalization in training and testing. The development set is used to tune some
meta-parameters of the models, e.g. the dimension of the PCA projection matrices.
The evaluation set is used to test the models with data that haven’s been seen in the
training and tuning steps. As the goal of the dataset is to evaluate FR rather than face
detection, the eye locations of some selected frames in each video are hand-labeled
and provided to the participants.

The organizer provided a baseline algorithm for both speaker recognition and
FR, and an algorithm based on fusion of the two modalities (video and audio) is
also provided [81]. The baseline algorithm can process 15 frames per second and
is suitable for running on mobile devices. For the competition, eight institutions
participated and most of the algorithms submitted relied on one or more features
of: local binary patterns, Gabor wavelet responses (especially Gabor phases) and
color information. With score fusion, the University of Ljubljana and Alpineon Ltd.
(UNILJ-ALP) performed best, achieving an equal error rate (ERR) of 2.751 % and
1.707 % on females and males respectively. Among those without fusion algorithms,
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the University of Campinas and Harvard University (UC-HU) team achieved the
best performance of 4.709 % and 3.492 % on females and males, respectively,
without relying on handcrafted features, but learned features with a convolutional
neural network [82] instead.

The contribution of the dataset is threefold: first, it provides a challenging FR
dataset with uncontrolled face videos; second, the dataset provides both audio
and video for fusing the two modalities to improve the identity authentication
performance; third, the whole dataset is recorded in mobile phones, and the
evaluation requires a trade-off between performance and hardware requirement,
which encourages algorithms designed for mobile devices.

The main drawback of the dataset is that in the FR evaluation, only one facial
image was extracted from each video with the eye positions labeled manually.
A more interesting problem is to look at how dynamics of the faces in the video
can help improve the accuracy of FR. Although the algorithms from the partic-
ipating institution were evaluated by the organizer, most of the datasets/partition
information are not available online for reproducibility of the results.

3.2.3 “The Famous” Labeled Faces in the Wild, Its Old and New Protocols

There exist a large number of benchmark databases for evaluating FR algorithms,
like FERET [15], AR [19] and ORL [83] just to name a few. A comprehensive list
can be found in [84]. Most of the these databases are collected in controlled (studio)
environment for studying certain aspects of FR (like expression and/or illumination)
which are posed or unnatural. Under these controlled conditions, FR algorithms
can achieve performance comparable to human beings. However, these algorithms
cannot generalize well to data collected under different natural or spontaneous
conditions. The LFW dataset [35] provides the FR community with uncontrolled
face images from the web for pairwise matching/unmatching problem. The LFW
dataset exhibits variability in lighting, pose, subject age, expression, race, gender
and so on. The goals of the dataset are:

• Provide a large database of real world face images for the unseen pair matching
problem of FR,

• Fit neatly into the detection-alignment-recognition pipeline, and
• Allow careful and easy comparison of FR algorithms.

The original LFW dataset contains 13,233 images of 5749 people, among which
1680 people have more than 1 image per person. The images were collected from
online internet news articles and processed using Viola-Jones face detector [85] for
detecting faces.
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The Old Protocol

This dataset contains 300 pairs of genuine matches and 300 pairs of imposter
matches for tenfold of cross validation leading to 3000 genuine and imposter
matches each. The dataset is organized in 2 “views”: view 1 is used for development
training/testing purposes, where the training/test partitions are generated randomly
and independently of the splits for tenfold of cross validation. This view is used for
model selection and/or validation purposes. View 2 is used for performance testing
and final evaluation of the algorithms to minimize fitting to the test data. View 2 is
divided in ten subgroups such that the face pairs are mutually exclusive for tenfold
of cross-validation, whose results are averaged to get the final performance of the
model selected with view 1 data [86].

As running the Viola-Jones face detection algorithm [85] generated the face
images, it fits well in the three-step detection-alignment-recognition pipeline for
FR, (as explained in Sect. 2.2) and indeed, the latest LFW dataset includes four
different sets of LFW images, the original and three different “aligned” images.
The aligned versions include, (1) the “funneled images” (LFW-a) by Huang et al.
[87], (2) for second version, an unpublished method is used for alignment of LFW-
a [86] and (3) “deep funneled” images again by Huang et al. [88]. The last two
funneled images produce superior results for most FV algorithms over the first two
sets of images. From the evaluation of various algorithms, it is evident that the
use of training data outside of LFW can have a significant impact on recognition
performance. Numerous benchmarking results can be found in [46].

In conclusion, the LFW dataset provides the research community with a less
controlled face dataset for FV system development. It has stimulated researchers
to work on more “natural” and unconstrained FR problems that would generalize
to data outside the existing dataset. However, as the face images were collected
from news articles on the web, they are affected by the photographers’ and editors’
choice, so there were not many images under extreme lighting conditions. Since the
faces are detected using the Viola-Jones detector, there are a limited number of faces
with side views and views from above and below.

The New Challenging Protocol

If we think of a very common real-world scenario where 500,000 visitors visit an
amusement park per day using facial biometrics, certain CVR at 0.1 % FAR implies
that 500 people can falsely (with fake or shared identity) enter the park per day.
This can be a big concern and loss to the park owner. Old LFW benchmark protocol
contains 3000 pairs of genuine matches and 3000 pairs of imposter matches in total
which are very limited to evaluate the large scale performance. Using old protocol,
performance evaluation at false acceptance rate (FAR) of 0.1 % is not statistically
significant as it requires to count only three imposters matching scores. A vast
majority of researchers has been following this old protocol, that uses partial data
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of this database to evaluate their algorithms (for details see LFW results website
[46]). So there is a need to enhance the LFW benchmark protocol and exploit all the
available data.

Liao et al. [6] designed a division of the LFW dataset into development-set that
contains a set of training and testing data to tune the parameters. Also, an evaluation-
set is designed to evaluate the performance of FR with 85,341 genuine matches,
6,122,185 imposter matches in training; 156,915 genuine matches and 46,960,863
imposter matches in testing. The new protocol takes into account large number of
genuine and imposter matches both in the training and testing datasets and hence, it
can evaluate very low FARs (e.g. <0.1 %), which are statistically significant.

Liao et al. [6] implemented seven learning techniques: PCA, LDA, large margin
nearest neighbor (LMNN), information theoretical metric learning (ITML), keep
it simple and straightforward metric learning (KISSME), locally-adaptive decision
functions (LADF) and joint Bayesian formulation using three features namely,
hand-crafted feature LBP, a learning based descriptor local embedding (LE) and
high dimensional LBP (HighDimLBP) feature. FAR and open-set identification
rates are measured as performance indicators. The best results are obtained using
joint Bayesian approach with HighDimLBP features [89], where the CVR achieved
is 41.66 % rates at FAR = 0.1 % and open-set identification rate as 18.07 % at rank 1
and FAR = 1 %. Therefore, it is evident from this recent benchmark study of large-
scale unconstrained FR [6] that the newer protocol is very challenging and more
practical as compared to the previously evaluated results [46].

Although this work added some improvements to the LFW benchmark study by
increasing the number of correct and false matches obtained by the data, the CVR
is too low to be considered in real-world FR applications. The performance is still
far from satisfactory as the verification and identification rates are very poor under
the large-scale unconstrained FR setting.

3.2.4 YouTube Video Database

LFW is a database used for evaluating FR algorithms with still face images
recorded in uncontrolled conditions. As for videos, there exist several methods that
have performed well in video FR tasks by exploiting the fact that a single face
might appear in a video in consecutive frames [90, 91]. But the datasets used for
developing those algorithms are primarily collected in highly controlled lighting
and shooting conditions with high quality storage. In contrast, the YouTube face
Dataset (YTF) [14] complements the LFW by providing a database of face videos
designed for studying the problem of FR in videos with uncontrolled lighting,
shooting condition and video quality. The videos were downloaded from YouTube
with identities from the LFW dataset. Each video in YTF comes with a label
indicating the identities of a person appearing in that video.

The dataset contains 3425 video clips of 1595 different people. The duration
of these video clips ranges from 48 frames to 6070 frames with an average
length of 181.3 frames per person. Because the videos were downloaded from
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the YouTube using automatic tools, this dataset is highly uncontrolled in terms of
lighting, shooting condition, video quality etc. Following the LFW protocol [35], the
evaluation of algorithms on this dataset is a standard tenfold cross validation, pair-
matching test. In the evaluation phase, 5000 video pairs are randomly selected form
the dataset, in which half are matched pairs (same person) and half are unmatching
pairs (different person). These pairs were divided into ten subgroups, each of which
contains 250 matched pairs and 250 unmatched pairs. Each algorithm is trained on
nine subsets and tested on the left 1 for 10 times with each of the subsets being the
testing set once. The average performance is reported.

All video frames are encoded by several well-established image descriptors
including LBP, center-symmetric LBP (CSLBP) and four-patch LBP. With these
encodings, several types of methods have been evaluated with the YTF database.
Because each video contains multiple frames and each frame can be encoded as a
vector, the problem of matching the faces in a pair of videos becomes matching
two sets of vectors. Three major groups of methods have been considered. The
first group employs comparisons between pairs of face images from each of the
two videos. The second group uses algebraic methods, which compare vector sets.
A third group including the pyramid match kernel and the locality-constrained linear
coding methods were effective in comparing sets of image descriptors. In total,
the author of the dataset evaluated five groups of methods with three types of face
image encoding and the results are shown in [14]. However, the best performance is
reported using the DeepFace recording an accuracy of 91.4 %.

The contributions of the YouTube dataset and the evaluations include the
following:

• A comprehensive dataset of labeled face videos in uncontrolled environment was
presented together with benchmarks and pair-matching tests,

• The benchmark was used to compare a variety of existing video face matching
methods and

• Stimulate further research in video FR in challenging and uncontrolled condi-
tions.

3.3 Summary of the Emerging Databases

Four databases for FR have been discussed in the above subsections. These four
databases together with six other emerging databases are summarized in Table 1.
The FRVT 2013 provides with three main types of images for testing typical identity
verification which could be deployed for detection of duplicates in databases,
detection of fraudulent applications for credentials such as passports, criminal
investigation, surveillance, and forensic clustering. The mugshot set and webcam set
vary in their image quality and they can help study the effects of image quality on
recognition performance. The evaluation also found that age of the people shown in
the images also contribute to the performance of nearly all FR algorithms evaluated.
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Usually the older the people, the easier it is for the FR algorithm to recognize. Sketch
faces based on FERET dataset was also used in the evaluation to support research in
face sketch synthesis and recognition. The FRVT has provided a platform to test the
commercial FR systems that have the potential to be deployed in different places by
the US government and it also identities the future research directions for the FR
research community.

GBU dataset provides three partitions of face images, each of different level of
difficulty. The images were collected in a partially controlled environment where
the pose and age are controlled but the expression, lighting are not. Because
all faces are frontal faces, the only reason causing different recognition results
is the representation of the faces in each image. FR algorithms can achieve
better performance than humans in fully controlled condition [4]. While in fully
uncontrolled conditions, no significant progress could be made. Thus the GBU
dataset stimulates the development of robust frontal FR algorithms that could
make progress in more challenging, partially controlled tasks without sacrificing
its performance in easier ones.

The MOBIO face database consists of more than 61 h of audio-video bi-modal
faces (also summarized in Table 1). The videos are recorded by handhold mobile
phones, recording people speaking to the phone camera while answering a set of
predefined questions. MOBIO provides the research community with a bi-modal
dataset that could be used to evaluate speaker recognition, FR as well as their
fusion. Since the videos are recorded by amateurs using mobile phones, there is large
variability in pose, illumination, background environment as well as the audio-video
quality. This nature of the dataset makes it challenging and encourages research to
combine both modalities to improve the performance. However, in the evaluation
stage, only individual frames containing faces were used to perform FR. A video
based FR system should give better performance by exploiting the dynamics of the
recorded faces. Another contribution of this dataset is to encourage the researchers
to focus on the trade-off between performance and hardware requirement. Since
the dataset is intended to stimulate development of algorithms that could find its
applications in mobile devices, an important aspect of the evaluation to consider is
the execution time and memory requirements.

Both LFW and YTF databases provide a large collection of faces recorded in
uncontrolled conditions from the internet. For LFW, the face images are from
online articles and each face comes with a label of the person’s name. The YTF
database takes a similar approach and the videos are downloaded from YouTube
and also come with identity labels of the people. These two databases offer the FR
community a good playground for developing and evaluating algorithms targeting at
more natural and less controlled settings. For the LFW database, although the face
images are more natural than those taken in fully controlled conditions, the images
are often taken with good lighting and lack non-frontal faces.

In summary, from the benchmark databases presented above, we can see the
following trend in FR research, benchmark database and protocol design:
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1. As FR in controlled environment is considered a “solved” problem with some
algorithms outperforming humans, the frontier of FR research is shifting to
uncontrolled and more natural settings.

2. Coupled with powerful computing machines, improved algorithms for deep
learning are able to discover patterns in large dataset. Hence larger labeled
databases are desired in the FR community to develop large-scale and robust
FR algorithms.

3. Nowadays, almost everyone cannot live without a mobile phone. FR systems on
mobile phone and wearable devices would find its application in our everyday
life. Thus robust FR algorithms running on mobile devices in natural settings
will be of great value to the consumers.

4. As more and more algorithms are being developed for FR in videos, the dynamics
of moving faces in videos should be further exploited to build more robust and
accurate next generation FR systems.

From such papers, evaluations and benchmark competition results, it is
apparent that unconstrained FR with large or small scale scenarios is largely
an unsolved problem and should receive further attention. Human beings are
amazing for FR under unconditioned settings. Even after years or with diverse
makeups/appearences, human beings hardly fail to recognize an individual. Hence,
it is imperative that we derive psychophysical and/or biological motivations from
human beings on aspects that have made them experts in FR over centuries.

4 Human Recognition of Faces

The human face is perhaps the most important class of objects that we are interested
to interact with. Our response to human faces is distinct from that to other classes of
objects: there seemed to be a selective preference to human faces as we age. A study
by Michael et al. [98] on 3-, 6-, 9-month old infants and adult groups revealed a
greater percentage of gaze dwell time on faces with age. This selective attention
of the human visual system towards other human faces might stem from having a
default network in the brain that drives a series of involuntary cognitive processes:
us thinking about recent events and speculating future ones that are founded on
social interactions and involve the theory of mind [99] during periods of inactivity.
Evidence from neuroimaging studies of brain diseases such as Alzheimer’s, autism,
schizophrenia depression etc., seemed to target and cripple this default network;
therefore leading to the impairment of social cognitive abilities on varying degrees
for patients with the aforementioned diseases.

The (hypothesized) existence of such network, one that attunes to social interac-
tions and theory of mind, supports the fact that we gravitate towards connecting and
understanding people above all others. This in turn, explains our selective preference
to human faces and motivates the need to study how we perform the two main types
of face recognition: face verification (for unfamiliar faces where the individual only
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has a sense of familiarity of having seen the face before e.g. acquaintances) [100]
and face identification (for familiar faces where the individual has both a sense of
familiarity of having seen the face before and is able to identify him/her by name)
as the foundation to successfully navigate the social world.

That being said, it will be beyond the scope of this chapter to involve all aspects of
neuroscience, neuroimaging and psychological studies to explain the neuroanatomy
of the default network and social cognition. Henceforth, the coverage of this part
of the review will be dedicated to psychophysical and neuroimaging discoveries
about the FR capabilities in humans. The sections that follow are the introduction
to the two main hypotheses on the motion advantage in recognizing faces, with
four other subsections on the current most difficult conditions pertaining to human
performance in FR (the Big Four! [4])—illumination-, facial expression-, view
perspective-, and age-invariant recognition. These four sections are distinct from
the challenges (scale, occlusion and motion blur) in machine recognition of faces
as discussed in Sect. 2. Finally, we would like to offer a preview of our integrated
experimental approach that might be feasible in transcending FR across the four
difficult conditions to achieve performance inspired by humans in an unconstrained
and naturalistic setting.

4.1 Temporal Cues That Aid Face Recognition:
Two Hypotheses to Explain Motion Advantage

Motion brings not only a face, but also the personality of its owner, to life. We are
inherently dependent on the dynamics of motion to infer the mental states of those
whom we are interacting in numerous social contexts. Visual inputs of the changes
in head movements, varying degrees of facial expressions, eye gaze directions etc.
bombard our senses in a myriad of signals before being integrated into a general,
yet uncannily accurate, perception of how the present moment of interaction feels
like. Such visual cues are essential in guiding our predictions of the ‘appropriate’
actions to take within a particular social context. If your counterpart is speaking to
you while his eye gaze kept darting towards the nearest exit or his watch, you would
probably have inferred that he is in a hurry to leave and that you should quickly
wrap things up and end the conversation.

Similarly, motion in dynamic faces gives rise to a plethora of information that
elevates both face verification and identification as compared to when static faces
are presented. Hence, research on human face processing is now delving into
dynamic faces to not only simulate a more realistic context for face recognition and
processing, it is also an attempt at dissecting and comprehending how the presence
of motion leads to improved face verification and identification performances. Con-
sequently, two hypotheses were formulated in an effort to explain the benefits that
dynamic faces impart on human recognition of faces: the supplemental information
hypothesis and representation enhancement hypothesis [7].
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The supplemental information hypothesis embodies an idea that the ventral
temporal cortex, which includes the lateral fusiform gyrus, occipital face area
and other associated structures in the human brain, is responsible for processing
both invariant face information and the idiosyncratic facial motions of individuals.
Inevitably, this confines the realization of the supplemental information hypothesis
in FR to recognizing familiar faces only [7]. Work by Lander and Chuang
[51] provided evidence that non-rigid facial motion (movement of internal facial
features such as blinking of the eyes and chewing movements of the mouth), more
than rigid motion (global movement of head including pan, tilt, yaw and other
head translations), improves FI of familiar individuals. “Distinctive” facial motion
(a separate entity from distinctive facial features) as well as “naturalness” of facial
motion (not artificially designed motion) suggested in [101], proved facilitative to
facial identification of familiar faces as well.

On the other hand, the representation enhancement hypothesis posits that
recognition performance of a novel face after a learning phase has a higher accuracy
than that learnt from static faces. This hypothesis is founded on a perspective-
oriented learning of unfamiliar faces; also known as the “structure-from-motion”
learning [102], where the advantage relies on the fact that knowledge about the
three-dimensional structure of an individual’s face can be gathered from motion
prior to subsequent recognition. Such a learning process is said to confer humans
the ability of recognizing unfamiliar faces. In an experiment by Pilz et al. [103],
subjects were primed with unfamiliar faces with emotions of either a frown or a
smile in non-frontal viewing perspectives and asked to do FV with a target face
in the frontal view with an opposite emotion from that of the primed face. Results
revealed that subjects generally responded faster when primed faces were in non-
rigid motion as compared to static ones.

These are some of the psychophysical experiments that are seemingly represen-
tative of the two different hypotheses mentioned. They can be considered seminal
works, which inspire later research to further refine FR experiments for the sake
of allowing a better understanding of how this is done so effortlessly in humans.
The following sections will discuss interesting findings for different facets of FR
spanning from the various fields of study (psychophysics and neuroimaging) for
cross validation and inspiration.

4.2 How Do Human Beings Handle the Big 4?

Similar to the challenges faced by computational models described in Sect. 2.1,
we human beings also face difficulties in recognizing individuals across various
conditions. In the following four subsections, we review some of the popular human
centered experiments and protocols so as to understand innovative strategies, prior
learning, biases at various levels and how exactly human beings overcome these
four big problems.
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4.2.1 Face Recognition Across Different Illumination Conditions

Astonishingly, there is little work done in terms of psychophysics experiments
conducted to investigate how humans do FR across illumination variations. Instead,
a plethora of work mostly centralized around improving or developing new pipelines
for computer vision under this category.

Nonetheless, Tarr et al. [104] have shown that recognition performance for
human is dependent on the difference between the degree of facial illumination
presented to subjects during the training and testing phases. Subjects were first
allowed to study a sheet of ten different frontal face images with their corresponding
names (e.g. Allen, Laura) printed. The faces were shown illuminated from the front,
normal to the face. For each face, the lighting space was sampled in 15ı increments
in both the horizontal and vertical axes to the right of the camera axis. In each of the
five experiments conducted, subjects were shown different subsets of illuminated
faces in the training phase (an illustration is shown in Fig. 14) before proceeding
to the full set in the testing phase with large illumination variations (similar to the
images shown in Fig. 1).

Fig. 14 Training sets for illumination variation experiments. Experiment 1 contains illuminations
within 15ı of the camera axis; Experiment 2 is a mirror of Experiment 1 with extreme lighting
directions. Experiments 3 and 4 have one illumination condition each, (0ı, 0ı) and (75ı, 0ı)
respectively. Experiment 5 contains illuminations along the horizontal meridian of the illumination
space; from (0ı, 0ı) to (75ı, 0ı) (Best viewed in color)
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Their results show that, in general, increasing the distance (i.e. the extent of
difference) between illumination coordinates from the training and testing phases
will decrease the FI performance of the subjects. Intuitively, we would expect
performance to be worst for Experiments 2 and 4 (refer to Fig. 14), where subjects
were trained with extreme illumination conditions ranging from 45ı to 75ı away
from the normal. Yet, interestingly, the most prominent drop in performance was
seen in Experiments 1, 3 and 5, where the face images were mostly illuminated from
the frontal or near frontal coordinates. The authors reconciled this observation by
explaining that because subjects were trained with extreme illumination conditions
in Experiments 2 and 4, they were able to identify the faces with greater accuracies
by using generic knowledge about geometry of faces as a class to infer their
appearances under novel illumination circumstances. The ability of prediction can
be attributed to the neural mechanisms of the posterior superior temporal sulcus
(pSTS), which is responsible for processing changeable information in faces; where
in this case it is the information on shape and surface orientations that is processed
[105]. This could prove as evidence of the hypothesis that the dorsal stream
pSTS identity representation might include a representation of facial shape that is
independent of signature motions [102]. This experiment has shown that the humans
are sensitive to the degree of face illumination conditions, and that learning from
extreme degrees of illumination, albeit counter-intuitively, facilitates recognition of
novel face configurations.

However, the experiment is still considered limited in terms of understanding
how the human visual system actually compensate for dynamic variations in
lighting. What the human visual system encodes is a continuum of illumination
changes as the coordinates of the light source changes temporally, as opposed
to the discreet increment of illumination changes in the experiment. There is,
therefore, much to gather in terms of how the shape and geometry of an individual’s
face changes with illumination along the temporal dimension are encoded in the
human visual system to confer us the high accuracy in FR under novel illumination
conditions.

Sinha [106] revealed human psychophysical studies on a subset of the illumi-
nation spectrum of faces: contrast negation. It shows when concluding whether an
image is a face, there is significant drop in performance with contrast negation.

As seen in Fig. 15, the patches in (a) and (b) have different overall brightness, but
the images can still be discerned as illustrating the same object—a face. However,
when comparing the patches in (a) and (c), where both have the same overall
brightness, the object depicted may be perceived differently. It was concluded that
the direction of brightness contrast, or otherwise known as contrast polarity, plays
an important role in object perception and recognition.

Another study by Wallis et al. [107] using 3D face images confirmed the
deduction that temporal cues in the context of varying illumination in motion
functions like a ‘perceptual glue’ in human visual perception. Subjects showed
the tendency to assume that they were viewing a single face sample when it was
actually morphed to a different identity during the transition of varying illumination
(refer to Fig. 16). The degree of this effect is influenced by the presence of a
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Fig. 15 Direction of contrast brightness affecting face detection, from Sinha [106]

Fig. 16 Illumination varies during the morph transition from sample C to D in gradual ratio
proportions, from Wallis et al. [107]

training phase where ‘unlearning’ the encoded visual representations of the sample
is difficult, thereby supporting the representation enhancement hypothesis of the
plausible “structure-from-motion” learning ability.

The context of any surface has an enormous effect on the color we see, e.g.
illumination from the sun looks red in the evening, but yellow at noon and the recent
2015 debate on the color of a bodycon dress being blue-and-black or white-and-gold
[108]. This is analogous to the scenario shown in Fig. 15. When there is a difference
in contrast brightness and direction from the image’s context to the object (i.e. both
dark to light contrast seen in (a) and (b), but reversed for (c)), we see the conflation of
illumination, reflectance and transmittance giving rise to the inverse optics problem;
therefore leading to erroneous perception of the object [109, 110]. The peculiar
way we see color and contrast, and hence, the way we perceive objects (especially
faces) remains to be explained. Perhaps the answer to this problem is the way in
which the human visual system copes with the inverse optics problem—a problem
that could plausibly be simplified by investigating, on a frame-by-frame basis, how
humans carry out FR across illumination variation leveraging on temporal dynamics
in videos.
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4.2.2 Face Recognition Across Different Facial Expressions

One of the most important skillsets for successful navigation in the social world is to
accurately infer the mental and emotional states of others; hence our possession of a
visual system that is attuned to human muscular motions [111]. One of the many
such muscular motions is facial emotional expression—the main type of visual
social cue that we infer from for information (such as the mental state of others,
the intention behind their actions etc.) [112] on how appropriate we are to behave in
a particular social context. Not only are facial expressions socially relevant, they are
important in facilitating FI. The advantage for this aspect of FR is more profound
when the facial expressions are presented in motion. Hereon, the main aspect of
discussion will focus on the effects of emotional expressions on FR.

Firstly, there is the factor of idiosyncratic facial motion, which includes that of
expressive (i.e. non-rigid motion) faces that promote higher FI accuracy. This is
evident especially in the identification tasks involving faces that are familiar to
the subjects during the experiment. The seminar work of [51] has shown that the
accuracy for FI of familiar faces is the highest for expressing faces and that they
outperform rigidly-moving (69.9 %, SD 14.5), talking (82.4 %, SD 11.7), and static
faces (56.5 %, SD 22.0) at 89.5 % (SD 6.8) identification rate. Further investigation
in a separate experiment showed 77.3 % (SD 12.2) of expressing faces possess
distinctive facial movements during the course of expression and hence the high
recognition rate for expressing faces in motion is obtained. This particular finding
concurs with the supplemental information hypothesis and that there is a very strong
motion advantage for identifying familiar faces based on a set of signature non-
rigid facial movements for every individual. In other words, it can be argued that the
processes for face expression and those for FI are integrated from plausibly different
neural mechanisms in a manner that facilitates better performance in FR.

Other interesting results from two of their experiments is that there is a higher
identification rate for familiar samples when the dynamics of non-rigid facial motion
is natural; not artificially created or modified, and that the speed of the facial motion
during expression is naturally fluid; not sped up or slowed intentionally [101]. An
explanation for these behavioral phenomena can be found in recent neuroimaging
data utilizing whole-brain analysis to show that the STS is the region with the
greatest BOLD response under the influence of increased information in dynamic
faces [113, 114] and fluidity of its motion [114]. What is especially interesting is that
it reinforces the idea of distinct processing mechanisms devoted to facial identity
and expression respectively. Majority of the ventral temporal face-sensitive regions
of the brain (i.e. bilateral fusiform face area (FFA), occipital face area (OFA),
right inferior occipital gyrus (IOG) and the right fusiform gyrus (FG)) seemed
to be sensitive to the increased amount of frame information in dynamic faces,
while a separate processing area is dedicated to the fluidity of that motion—STS
[115]. Giese et al.’s [116] computational model of biological motion recognition
has specified both a motion pathway and a form pathway in which neurons in
the middle temporal (MT) area, the middle superior temporal (MST) area and the
kinetic occipital (KO) area are attuned to discern optic flow localities before sending
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its flow pattern to the STS for classification and identification in a feed-forward
manner. This series of form detectors posits to supplement information from surface
deformation of the face with the invariant face form learnt by the ventral temporal
brain regions from multiple frames. Once again, this could potentially support the
notion that enhanced FR from viewing the dynamics of natural facial expressions is
not only dependent on the increased information presented in the form of increased
number of frames, but relies on a disparate encoding process of an individual’s non-
rigid motion signature as well.

Another set of study by Rigby et al. [117] tested subjects on face processing
where they have to make speeded expression (or identity) judgments of static
and dynamic faces while identity (or expression) were held constant or varied.
By showing that there was significant interference when processing static faces
compared to dynamic faces, they provide evidence to support the idea that dynamic
cues arising from the motion of facial expression, do facilitate a more efficient FI
process. This dynamic advantage, however, was more obvious with the expression
task as compared to the identity task. A plausible rationale behind such an
observation could be that expressions causes global descriptors, which are crucial
for holistic face processing, to be superseded by feature-based processing [28, 118].
Since facial expressions are considered socially salient and relevant [111], it is not
surprising that humans will attend to and become adept at judging the types of
expression.

Experiments on the composite effect of face processing, whereby feature-based
face processing is dominant over holistic face processing, can serve as added
evidence of having separate mechanisms for identity and expression recognition
proficiency in humans. Underpinning this partial differentiation of the neuronal
domains for identity and expression are human fMRI adaptation studies [119], as
well as studies on prosopagnosic patients who possess the capability of recognizing
facial expressions despite their disability in recognizing face identities [120, 121].

Concurring with this tenable anatomical discrimination of encoding for identity
and expression, feature-based visual processing exuded in humans is demonstrated
by Xiao et al. [122], who showed that subjects learning novel faces in non-rigid
motion will have their feature-based FR less affected by irrelevant information in
composite faces. They were more competent at verifying if the top and bottom
halves of a face belonged to the same person after learning them in motion than
with static faces. Such results are accounted for by the representation enhancement
hypothesis—a ‘structure-from-motion’ type of learning. Perhaps, the motion infor-
mation from the STS and other similarly committed brain regions is mapped in a
piecewise manner to specific sites of the face according to the observed surface
deformation in order for the brain to learn a set of signature facial movements for
individuation. Using results from a classic experiment by Patterson and Baddeley
[131] as an illustration, a simultaneous shift in both a face’s viewing perspective
and emotional expression between the learning and testing phases did not induce a
significant drop in FI performance [123]. On the contrary, a sole change in viewing
perspective will severely compromise FI performance during the testing phase. This
suggests room for leveraging on the advantage of using dynamic facial expressions
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to extrapolate recognition from neutral or a set of orthogonal expressions. After all,
the act of smiling not only stretches one’s mouth such that it takes up a larger area
relative to a neutral face; yet it allows the viewer to visually encode the unique
shape and trajectory of that smile to aid face discrimination. It, therefore, will be
worthwhile to investigate the exact mechanism of mapping such a dynamic learning
process to invariant recognition of faces.

4.2.3 Face Recognition Across Different Viewing Perspectives

Being immersed in a social world, we interact with people under unconstrained
conditions on a daily basis. One of such conditions is the constant change in viewing
perspective of a face. Be it listening to a presentation at a conference or talking
to a group of friends, we all succumb to viewing faces in a range of different
angles relative to the horizontal and vertical axes from the normal of the frontal
view. Hence, it is relevant to understand how such rigid motion (e.g. yaw or pitch)
contributes useful input to the human visual system for robust FR.

Intuitively, presentation of a face moving across different perspectives to a
subject will provide him with more information of the overall 3D structure of the
individual; but which aspects of a dynamic face allows for better FR? It was argued
that perhaps the human visual system is evolved to achieve a representational struc-
ture that includes object information across both temporal and spatial dimensions.

In a FV task across different view perspectives, Pilz et al. [103] established evi-
dence that learning a novel face in motion will lead to heightened FV performance,
along with a shorter response time, as compared to that when learning a static face.
This observation was obtained despite the fact that the target face to be matched
was presented in a different viewing perspective from that of the learned dynamic
face. Souza et al. [124] discovered a heterogeneous distribution of view-selective
face neurons in the anterior STS (aSTS) that might be able to explain how humans
learn face identity from different view angles. They found that in the caudal region
of the aSTS, majority of the face-sensitive neurons elicited responses to the right
and left views of a face. On the other hand, face-sensitive neurons in the rostral
region showed a peak in response to a single oblique view only. This could imply
that the processing of a face’s different perspectives is conducted by having different
populations of neurons represent specific sets of view angle information. Therefore,
when testing a novel face’s identity is conducted after learning from a dynamic face,
a faster response time with higher recognition accuracy can plausibly be explained
with the integration of view angle information gathered by neurons in the different
regions of the aSTS, along with the identity information from the FG.

A lot of the image-based recognition of objects (including faces) is carried out at
the level of fine abstract features [107]. Neurons learning the invariant properties of
a feature not only capture information on the object’s transformations, they might
also generalize such learning to a diversity of objects that might contain the same
feature. Such a theory may offer an explanation as to why humans are competent in
identifying objects from novel viewing angles. It also functions as evidence that
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temporal cues extracted from dynamic faces influence neural representations of
objects by serving as the ‘perceptual glue’ to gel learnt concepts for subsequent
recognition. However, the exact neural computation for such an abstract, generalized
learning mechanism remains elusive to this day.

4.2.4 Face Recognition Across Age Differences

As humans age, the sands of time will etch a gradual, conspicuous trail of changes
to the skin surface. Being a complex process, facial aging affects both the shape and
texture of a face. Its manifestations vary among different age groups and ethnicities
[125], with extrinsic factors like individual lifestyles and environmental conditions
affecting the rate and extent of observable aging.

Understanding FR across time lapses in age is crucial especially in applications
such as forensic art, electronic customer relationship management, security control
and surveillance monitoring, biometrics, entertainment (e.g. accelerate actors’ age
in movies as required) and cosmetology [33]. Notwithstanding the relevance of FR
in this aspect, there is very little work done using human psychophysics to study age
invariant recognition in contrast to the vast amount of literature on computer vision
techniques in this aspect.

Perhaps the computer can outperform human in terms of fine changes in facial
such as the identification of craniofacial growth (i.e. changes in face shape) and the
relative surface area and protrusion of facial features such as eyes, nose, ears, mouth,
cheeks and chin (the cranium grows to cause sloping and shrinking of the forehead
by releasing more space on the cranium’s surface for those features) [126]. Skin
texture will also be expected to change as collagen breaks down and the skin sags to
form wrinkles due to its inability to maintain its former elasticity. At the same time,
implications from previous exposure to the sun and age-related health problems
like liver failure will begin to show in the form of hyper pigmentation patches
and a yellowish complexion (e.g. jaundice) respectively on the skin’s epidermal
layers [127]. All these and more might not be as obvious to the human eye as it
can be to a computer. However, given the premise that dynamic face information
is omnipresent in reality, humans might be able to verify/identify a face with a
much shorter processing time than machines. This age-invariant FR with motion
is, unfortunately, not tested in any recent psychophysics or behavioral study for
our evaluation. The closest we can get to human studies in this area of work is
partially demonstrated by Suo et al. [128] where they did a simple human study
after synthesizing new faces across different ages using a dynamic face aging model
with multi-resolution and multi-layer image representations.

Given that their experiment is computational in nature (refer to Fig. 17 as
an illustration) for an outline of their pipeline, the purpose of the included human
study was to validate that their dynamic face aging model approximates to human
perception. They did so in two separate experiments: one required the subjects to
give estimates for the age of the face seen in original images and those generated by
their model. The other task required subjects to match synthesized images of aged
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Fig. 17 Brief pipeline for dynamic face aging model

faces to their corresponding ‘younger’ face images. While subjects’ estimates in the
first task were consistently precise with the age of synthesized images, they did not
perform as well in the second face-matching task. It was shown that identification
performance decreases as the age difference between synthesized and real images
increases.

Predicting how a person will look like in future as he/she ages is a hard task
since everyone does so at different rates and that the signs of aging will differ from
person to person. Moreover, using static images will be reducing FV to a picture-
matching task that does not reflect the practical circumstances in which humans do
so naturally—seeing faces in motion. It is plausible that certain facial features, given
learning with motion, could serve as cues for invariant recognition across age (e.g.
unique face surface deformations when smiling or frowning).

4.3 Transcending the Big Four: Evaluating Human
Performance in Dynamic Perspective Invariant
Face Recognition

We understand that prior work suggested that dynamic motion provides additional
information, given an increase in number of frames to the identity of a face
than static images, for an efficient FR system that allows human to navigate
successfully in a social world. What remains unknown thus far is the type of
additional information that can be gleaned from motion to support this inherent
capability of mankind. In addition, the design of one or more FR tasks do not
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mimic the complex ones which we face in the natural world: recognizing a friend
in a mall or an unfamiliar keynote speaker at a conference meeting when he/she
is conversing with another (i.e. combination of changing view perspective with
expressive motion), recognizing a relative whom you’ve not seen in years as he/she
darts into a sheltered building on a sunny mid-afternoon (i.e. combination of view
perspective illumination and age variations) etc. Hence, there exist the knowledge
gap as to how humans tackle such challenging recognition circumstances (situations
where several conditions are confounded) seamlessly and effortlessly.

With well-established work done with dynamic FR, we question if there exist
a generic strategy for each type and/or combination of conditions employed by
humans given unconstrained viewing of faces in motion. Some might reckon that
machine FR performance could very well have surpassed that of human’s [2], with
a 97 % correction recognition rate by the standard LFW protocol. However, it entails
a 3 % FAR (False Acceptance Rate) that is unsatisfactory for practical applications.
Even at 0.1 % FAR, the algorithm cannot be implemented for large-scale recognition
as discussed in Sect. 3.2.3, e.g. airport security which handles hundreds of thousands
of people daily (large number of genuine and imposter matches) [6].

Therefore, we design our experiment to investigate the plausible facial features
and eye-gaze strategies of previously unfamiliar faces to be learnt in dynamic
motion for subsequent recognition tasks [129]. This psychophysical experiment to
be conducted aims to obtain inspirations from highly-competent human subjects to
determine if generic eye gaze scan path strategies, as well as crucial facial features,
can be used to explain FV for the different realistic scenarios occurring around us
on an everyday basis.

Subjects will be presented with pairs of dynamic face samples recorded in an
array of different unconstrained settings and they will be asked to identify if the two
faces belonged to the same person (i.e. FV). Key features from the tests can then be
evaluated so that we may emulate the competence of the human recognition system
to push the boundaries of machine FR.

5 Summary and Future Trends

Rigorous and huge amount of research efforts from diverse fields of studies like
computer, cognitive and biological sciences, are aiming to tame the challenging
problems of FR. As we have seen over the period of years, for constrained and well-
conditioned limited cases, the field of FR has reached a certain level of maturity.
However, a vast majority of unconstrained FR cases require further attention and
new directions in their investigations. FR using videos is going to play a much bigger
role in the years to come. As explained in Sect. 2.3.2, with hardware devices for
computing, recording and storing the relevant data are becoming cheaper and more
readily available, people will be able to perform their vision based tasks (such as
FR) in video-to-video scenarios. The rich temporal information available in such
modalities (captured under scenarios described in Sect. 2.1) makes it very appealing
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and attractive to many researchers. So it should be really exciting and challenging
for researchers to find new methodologies for video based FR involving very high,
large scale face voluminous data.

In recent times, DNN involved in deep learning architecture based method-
ologies using gigantic amount of training face images and hundreds of millions
of parameters have shown surprisingly outstanding results. Results shown by
DeepFace, DeepID and few others, are really impressive and they outperform most
of the handcrafted features obtained using traditional machine learning approaches.
However, their evaluations on large scale unconstrained FR problem as described
in Sect. 3.2.3 are yet to be done. Moreover, their training images, architecture and
learning frameworks are proprietary, thereby leaving very limited scopes for further
research using large scale training images. One important factor that researchers can
look into is how to develop DNN framework using lower number of training samples
and how biologically inspired networks can be incorporated in DNN framework.

On the human FR aspect, researchers in cognitive science are moving away
from how humans recognize still face images to recognition of faces in videos
[130]. As explained in Sect. 4.1, the formulation of two hypotheses by O’Toole
et al., is an attempt to explain the benefits that dynamic faces impart on human
recognition of faces. The supplemental information hypothesis asserts FR depends
on the representation of features and/or motion that is unique to an individual—his
facial identity signature. Most experiments using familiar faces as stimuli fall under
this category. Lander and Chuang showed that facial motion, specifically non-rigid
motion, improves identification of faces when the dynamics are labeled ‘distinctive’,
possess ‘naturalness’ (i.e. no artificial animations) in the motion and are viewed at
naturalistic speeds.

On the other hand, the representation enhancement hypothesis posits that recog-
nition performance of a novel face after a learning phase has a higher accuracy than
that learnt from static faces. Lander and Bruce experiments have shown a heightened
recognition performance after learning an unfamiliar face in motion. Although some
argued that multiple static images of a face in different perspectives might be able to
account for such learning advantage, studies by Pike et al. suggests that performance
worsened when faces are learnt using a series of static images viewed in random
order. These, and a few other works, showed that the dynamics of faces provide the
viewer with a 3D structure that cannot be derived from multiple static views alone;
hence making the study of faces in motion attractive.

The emerging directions discussed in Sect. 2.3 shed some light on how
researchers are making fresh efforts in alleviating FR problems. One of the
areas that has received attention is the biologically motivated approaches for FR.
Understanding the invariance identity-preserving transformation theory may help
to extract features that are invariant to certain transformations (may not be all). This
would help to completely eradicate pre-processing stages in FR pipelines when
processing raw images; thereby increasing their computational efficiencies and
reducing the error rates at various stages.

Understanding how humans perform FR via behavioral studies can provide the
first peek as to how the human brain gleans information from the external world in
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which we interact. This is the motivation driving our experiment: the first step to
emulate naturalistic FR. However, the research sphere for FV is relatively nucleated
as compared to FI; with the latter involving information association and retrieval
from the human memory. As such, we propound the notion of a two-prong approach
to investigate the human memory and human performance in FR to plausibly
leapfrog the long standing hurdles of machine recognition of faces.
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